
Methodology
Handbook

Efficient Development of Safe
Avionics Software with DO-178C
Objectives Using SCADE Suite®

Second Edition

CONTACTS

DISCLAIMER: The content of this handbook is distributed for informational use only, is subject to change without notice, and should not be
construed as a commitment by Ansys. Although every precaution has been taken to prepare this manual, Ansys assumes no responsibility or liability
for any errors that may be contained in this book or any damages resulting from the use of the information contained herein.

Copyrights © 2021 ANSYS, Inc. All rights reserved. Ansys, SCADE, SCADE Suite, SCADE Display, SCADE Architect, SCADE LifeCycle, and SCADE Test
are trademarks or registered trademarks of ANSYS, Inc. or its subsidiaries in the U.S. or other countries. All other trademarks and tradenames
contained herein are the property of their respective owners.

Legal Contact Technical Support

ANSYS France S.A.S.
15 place Georges Pompidou
78180 Montigny-le-Bretonneux FRANCE
Phone: +33 1 30 68 61 60
Fax: +33 1 30 68 61 61

ANSYS France S.A.S.
Parc Avenue, 9 rue Michel Labrousse
31100 Toulouse FRANCE
Phone: +33 5 34 60 90 50
Fax: +33 5 34 60 90 41

Submit questions to SCADE Products Technical Support at scade-support@ansys.com.

Contact one of our Sales representatives at scade-sales@ansys.com.

Direct general questions about SCADE products to scade-info@ansys.com.

Discover latest news on our products at www.ansys.com/products/embedded-software.

Shipping date: April 2021 Revision:SC-HB-DO178C-KCG66 - DOC/rev/74520-04 SecondEd

mailto:scade-support@ansys.com
mailto:scade-sales@ansys.com
mailto:scade-info@ansys.com
http://www.ansys.com/products/embedded-software

Methodology Handbook / SCADE Suite with DO-178C Objectives

Abstract

This handbook provides detailed explanations on how to fully satisfy

DO-178C objectives with a SCADE model-based approach while

promoting an efficient development and verification strategy aimed at

reducing costs and increasing productivity. The handbook reviews the

regulatory guidance before presenting the optimization of the

development and verification processes that can be achieved with the

SCADE Suite® methodology and tools. SCADE Suite supports the

automated production and verification of a large part of the

development life-cycle elements. The effect of using SCADE Suite

together with the qualified KCG Code Generator is presented in terms

of savings in the development and verification activities, following a

step-by-step approach and considering the objectives that have to be

met at each step.

Methodology Handbook / SCADE Suite with DO-178C Objectives / i

1. Document Background, Objectives, and Scope 1

1.1 Background 1
1.2 Objectives and Scope 1
1.3 Challenges in Airborne Software Development 3

1.3.1 Avoid multiple descriptions of the software 3
1.3.2 Prevent ambiguity and lack of accuracy in specifications 3
1.3.3 Avoid design and coding errors 3
1.3.4 Allow efficient implementation of code on target 3
1.3.5 Find specification and design errors as early as possible 3
1.3.6 Lower complexity of updates 4
1.3.7 Improve verification efficiency 4
1.3.8 Provide efficient way to store Intellectual Property (IP) 4

2. Development of Safety-Critical Airborne Software 5

2.1 ARP 4754A and DO-178C Guidance 5
2.1.1 Introduction 5
2.1.2 ARP 4754A/ED-79 5
2.1.3 DO-178C/ED-12C 5
2.1.4 Relationship between ARP 4754A, ARP 4761, and DO-178C 6
2.1.5 Development assurance levels 7
2.1.6 DO-178C documents structure 8
2.1.7 Objective-oriented approach 9
2.1.8 DO-178C processes overview 9

2.2 DO-178C Development Processes 10
2.3 DO-178C Verification Processes 11

2.3.1 Objectives of software verification 11
2.3.2 Reviews and analyses of HLR 12
2.3.3 Reviews and analyses of LLR and architecture 12
2.3.4 Reviews and analyses of the source code 12
2.3.5 Software testing process 14

2.4 DO-331 Model-Based Development and Verification Processes 16
2.4.1 Model Definition 17
2.4.2 Model Categorization 17
2.4.3 Impact of Model-Based Development in DO-178C Development Processes 18
2.4.4 Impact of Model-Based Development in DO-178C Verification Processes 18
2.4.5 Model coverage analysis for design models 19
2.4.6 Model coverage criteria 19

2.5 DO-330 Software Tools Qualification Considerations 20
2.5.1 Purpose of tool qualification 20

Table of Contents

Table of Contents

Methodology Handbook / SCADE Suite with DO-178C Objectives / ii

2.5.2 Tool criteria 21
2.5.3 Tool Qualification Levels 21
2.5.4 Tool Stakeholders 22

3. Model-Based Development with SCADE 23

3.1 What is SCADE? 23
3.2 SCADE Modeling Techniques 24

3.2.1 Modeling behavior with SCADE Suite 24
3.2.2 SCADE Suite cycle-based intuitive computation model 29
3.2.3 SCADE Suite as a model-based development environment 30
3.2.4 SCADE modeling and safety benefits 32

4. Software Development Activities with SCADE Suite 33

4.1 Overview of Software Development Activities 33
4.2 Software Requirements Process 34
4.3 Software Design Process with SCADE Suite 34

4.3.1 Architecture design 34
4.3.2 SCADE low-level requirements development 36
4.3.3 Reusable components and library management 39
4.3.4 Robustness management 40

4.4 Software Coding Process 43
4.4.1 Code generation from SCADE Suite models 43
4.4.2 Code generation from multiple components 46

4.5 Software Integration Process 47
4.5.1 Integration aspects 47
4.5.2 Interface with the external environment 47
4.5.3 SCADE Suite module integration 47
4.5.4 Integration of external code 48
4.5.5 Scheduling and tasking 48

4.6 Teamwork 51

5. Software Verification Activities 55

5.1 Overview 55
5.2 Verification of High-Level Requirements 55

5.2.1 Verification objectives for HLR 55
5.2.2 Verification methods for HLR 56
5.2.3 Verification summary for HLR 56

5.3 Verification of SCADE Low-Level Requirements and Architecture 56
5.3.1 Verification objectives for the LLR and architecture 56
5.3.2 Compliance with high-level requirements 57

Table of Contents

Methodology Handbook / SCADE Suite with DO-178C Objectives / iii

5.3.3 Model accuracy and consistency 62
5.3.4 Compatibility with target computer 62
5.3.5 Verifiability 65
5.3.6 Conformity to standards 65
5.3.7 Traceability from SCADE Suite LLR to HLR 65
5.3.8 Algorithms accuracy 66
5.3.9 Partitioning 67
5.3.10 Verification of simulation cases, procedures and results (MB. specific objectives) 67
5.3.11 Verification summary for LLR and architecture 67

5.4 Verification of Coding Outputs and Integration Process 69
5.4.1 Verification objectives for coding output and integration process 69
5.4.2 Impact of code generator qualification 69
5.4.3 Verification of parameter data items 70
5.4.4 Verification summary for coding output and integration process 71

5.5 Testing of Outputs from Integration Process 71
5.5.1 Testing objectives for outputs from integration process 71
5.5.2 SCADE Combined Testing Process overview 71
5.5.3 Compliance of EOC with HLR (MB.A-6 #1) and robustness with HLR (MB.A-6 #2) 72
5.5.4 Compliance of EOC to LLR (MB.A-6 #3) 73
5.5.5 Robustness of EOC with LLR (MB.A-6 #4) 74
5.5.6 Compatibility of EOC with target (MB.A-6 #5) 74
5.5.7 Verification summary for testing outputs from integration process 75

6. Verification of the Verification Activities 77

6.1 Verification Objectives 77
6.2 Verification of Test Procedures and Results 78
6.3 HLR Coverage Analysis 78
6.4 LLR Coverage Analysis 78

6.4.1 SCADE Test Model Coverage overview 78
6.4.2 Logics LLR coverage analysis (MB.A-7#4) 79
6.4.3 Source code coverage analysis (from MB.A-7#5 to MB.A-7#8) 85
6.4.4 Data and control coupling verification (MB.A-7#8) 85
6.4.5 Verification of additional code untraceable to source code (MB.A-7#9) 86
6.4.6 Verification of simulation cases, procedures and results (MB.A-7#10, #11 and #12) 86

6.5 Summary of Verification of Verification 87

Table of Contents

Methodology Handbook / SCADE Suite with DO-178C Objectives / iv

Appendixes and Index 89

A References 93

B Acronyms and Glossary 95

C DO-178C Qualification of SCADE Suite KCG and SCADE Verification Tools 99

C-1 What Does SCADE Suite KCG Qualification Mean and Imply? 99
C-1.1 Development of SCADE Suite KCG 99
C-1.2SCADE Suite KCG Life-Cycle Documentation 100

C-2 SCADE Test Model Coverage at TQL-4 Level 100

C-3 SCADE Test Environment for Host and SCADE Test Target Execution at TQL-5 Level 101
C-4 SCADE LifeCycle Reporter at TQL-5 Level 102

D SCADE Suite Compiler Verification Kit (CVK) 103

D-1 CVK Product Overview 103

D-2 CVK Representativity 104

D-3 Strategy for Developing SCADE Suite CVK 105

D-4 Use of SCADE Suite CVK 106

INDEX 109

Methodology Handbook / SCADE Suite with DO-178C Objectives / v

Figure 2.1: Relation between ARP 4754A, ARP 4761, and DO-178C processes 6

Figure 2.2: DO-178C documents structure 8

Figure 2.3: DO-178C life-cycle processes structure 10

Figure 2.4: DO-178C development processes 10

Figure 2.5: DO-178C testing process 14

Figure 3.1: Applicative part of software 23

Figure 3.2: Control engineering view of a Controller 24

Figure 3.3: A software engineering view 24

Figure 3.4: Graphical notation for an integrator operator 25

Figure 3.5: Sample of model data flows from a Flight Control system 26

Figure 3.6: Detection of a causality problem 26

Figure 3.7: Functional expression of concurrency 27

Figure 3.8: Detection of a flow initialization problem 27

Figure 3.9: Initialization of flows 27

Figure 3.10: Mixed data and control flows from Flight Control 29

Figure 3.11: Cycle-based execution model of SCADE 30

Figure 4.1: Software development processes with SCADE Suite 33

Figure 4.2: Software design process with SCADE Suite 34

Figure 4.3: Top-level view of a simple Flight Control System 35

Figure 4.4: A first order filter 37

Figure 4.5: Complex display logic and simple functions 38

Figure 4.6: State machine in Flight mode management 38

Figure 4.7: Concept of SCADE Suite library 40

Figure 4.8: Example of generic operator instantiated with int and bool types 40

Figure 4.9: Example of operator parameterized by size 40

Figure 4.10: Inserting Confirmator in Boolean input flow 41

List of Figures

List of Figures

Methodology Handbook / SCADE Suite with DO-178C Objectives / vi

Figure 4.11: Inserting Limiter in output flow 41

Figure 4.12: Example of robust architecture 42

Figure 4.13: Software coding process with SCADE Suite 43

Figure 4.14: SCADE Suite data flow to generated C source code traceability 44

Figure 4.15: SCADE Suite state machine to generated C source code traceability 45

Figure 4.16: Non-expanded and Expanded modes 45

Figure 4.17: Code generation and multiple components 47

Figure 4.18: Execution semantics of SCADE Suite 48

Figure 4.19: SCADE Suite code integration 49

Figure 4.20: Modeling a bi-rate system 50

Figure 4.21: Timing diagram of a bi-rate system 50

Figure 4.22: Modeling slow system over four cycles 50

Figure 4.23: Timing diagram of distributed computations 51

Figure 4.24: Typical teamwork organization 52

Figure 5.1: Verification cases creation and management in Test Environment for Host 58

Figure 5.2: Simulation results from running verification cases on host 59

Figure 5.3: Model coverage analysis with SCADE Test Model Coverage 60

Figure 5.4: Observer operator containing landing gear safety property 61

Figure 5.5: Connecting the observer operator to the landing gear controller 61

Figure 5.6: Timing and Stack analysis global visualization 64

Figure 5.7: Timing Verifier analysis reports 64

Figure 5.8: Creating LLR/HLR traceability links within ALM Gateway 66

Figure 5.9: Factor simulation and test cases with SCADE Test 72

Figure 5.10: Combined Testing Process 72

Figure 5.11: Factor simulation and test cases with SCADE Test Target Execution for logics 73

Figure 6.1: Position of SCADE Test Model Coverage within the verification flow 80

List of Figures

Methodology Handbook / SCADE Suite with DO-178C Objectives / vii

Figure 6.2: Model coverage analysis/resolution with SCADE Test Model Coverage 81

Figure 6.3: Non activated Confirmator 82

Figure 6.4: Uncovered “reset” activation 82

Figure 6.5: Tag propagation and output observation for SCADE Suite model coverage 83

Figure 6.6: Tags and observation for Influence 83

Figure 6.7: Tags and observation for ODC 84

Figure D.1: Role of KCG and CVK in verification of user development environment 103

Figure D.2: Strategy for developing and verifying CVK 105

Figure D.3: Use of CVK items in user processes 106

Figure D.4: Position of CVK items in the Compiler Verification Process 106

Methodology Handbook / SCADE Suite with DO-178C Objectives / ix

Table 2.1: Top-Level function DAL assignment 7

Table 2.2: Example of test cases satisfying MC/DC 16

Table 2.3: Model usage examples (DO-331 Table MB.1-1) 18

Table 3.1: Components of Scade functional modules: operators 25

Table 5.1: DO-178C Table A-3 55

Table 5.2: DO-178C Table A-3 Objectives Achievement 56

Table 5.3: DO-331 Table MB.A-4 56

Table 5.4: DO-331 Table MB.A-4 Objectives Achievement 67

Table 5.5: DO-331 Table MB.A-5 69

Table 5.6: DO-331 Table MB.A-5 Objectives Achievement 71

Table 5.7: DO-331 Table MB.A-6 71

Table 5.8: DO-331 Table MB.A-6 Objectives Achievement 75

Table 6.1: DO-331 Table MB.A-7 77

Table 6.2: Coverage criteria in SCADE Test Model Coverage for SCADE Suite models 84

Table 6.3: DO-331 Table MB.A-7 Objectives Achievement 87

Table C.1: Documents delivered for KCG qualification audit by Certification Authorities 100

List of Tables

Methodology Handbook / SCADE Suite with DO-178C Objectives / 1 - 1

1/ Document Background, Objectives, and Scope

1.1 Background

The avionics industry has a very long
tradition of rigorous software
development. The function and
architecture of an embedded software
system (i.e., Flight Control, Braking,
Cockpit Display, etc.) are defined by
system engineers; the associated control
laws are developed by control engineers
using some informal notation or a semi-
formal notation mainly based on schema-
blocks and/or state machines; and the
embedded production software is finally
specified textually and coded by hand in C
or Ada by software engineers.

In this context, the support of a model-
based qualified tool chain (including but
not limited to qualified code generation)
carries strong Return On Investment (ROI),
while preserving the safety of the
application. Basically, the idea is to
describe the application through a
software model, including control laws as
described above and to automatically
generate the code from this model using a
code generator qualified with respect to
[DO-330]. This method has several
advantages for the development life cycle
when a proper modeling approach is
defined:

• It fulfills the needs of the control
engineers, typically using such notations
as data flow diagrams and state
machines.

• It fulfills the needs of software engineers
by supporting the accurate definition of
the software requirements and by
providing efficient automatic code

generation of software having the
qualities expected for such applications
(i.e., efficiency, determinism, static
memory allocation, etc.).

• It allows for establishing efficient new
processes to ensure that DO-178C
objectives are met.

• It saves coding time, as this is automatic.
• It saves a significant part of verification

time, as the use of such tools
guarantees that the generated source
code conforms to the software model.

• It allows for identifying problems earlier
in the development cycle, since most of
the verification activities can be carried
out at model level.

• It reduces the change cycle time, since
modifications can be done at model
level and code can automatically be
regenerated.

1.2 Objectives and Scope

This document provides a careful
explanation of a DO-178C compliant
software life cycle as described in DO-178C
and DO-331 guidance (see [DO-178C] and
[DO-331]). It also presents a quick overview
of an ARP 4754A compliant system life
cycle (see [ARP-HB] for more information).
The rest of the document explains how the
use of proper modeling techniques and
qualified code generation from models
can drastically improve productivity in the
development and verification of safety
critical software. It is organized as follows:

Section 2/ introduces the regulatory
guidance of ARP 4754A, DO-178C, and DO-
331 used when developing embedded

Methodology Handbook / SCADE Suite with DO-178C Objectives / 1 - 2

aeronautics systems and software. It also
addresses Tool Qualification
considerations according to the DO-330
guidance.

Section 3/ presents an overview of SCADE
Suite methodology and tools, including
how our solutions achieve the highest-
quality standards while reducing costs
thanks to model-based development and
verification, with a strong emphasis on the
following points:

• A unique and accurate software
description, which enables the
prevention of many specification or
design errors, can be shared among all
project participants.

• Early identification of design errors
makes it possible to fix them in
requirements/design phase rather than
in testing or integration phases.

• Qualified code generation not only saves
writing the code by hand, but also the
cost of verifying it.

• Automation of verification activities
relies on a set of SCADE testing and life-
cycle management tools qualified as
verification tools.

Section 4/ is devoted to the software
development activities using SCADE tools,
including the use of the SCADE Suite KCG
qualified code generator. It also presents
the integration of generated code on

target, including when it has to be
connected with an RTOS (Real-Time
Operating System).

Section 5/ and Section 6/ present the
verification activities to be performed
when using SCADE tools. Several model-
based verification methods and
techniques are presented. They rely on
various verification modules of the SCADE
Suite, SCADE Test, and SCADE LifeCycle
products.

Appendix A/ provides a reference list.

Appendix B/ lists all acronyms used in this
document and explains key terminology in
a glossary.

Appendix C/ details the qualification
process of SCADE Suite KCG code
generator.

Appendix D/ details the Compiler
Verification Kit (SCADE Suite CVK).

The concepts and methodology described
in this document are applicable starting
from the following product configuration
(and onwards):

• SCADE Suite 19.2 with SCADE Suite
KCG 6.6

• SCADE Test Model Coverage 19.2 for
SCADE Suite

• SCADE Test Environment for Host and
SCADE Test Target Execution 19.2

• SCADE LifeCycle 19.2

Methodology Handbook / SCADE Suite with DO-178C Objectives / 1 - 3

1.3 Challenges in Airborne Software
Development

This section introduces the main
challenges that a company faces when
developing safety-critical airborne
software.

1.3.1 Avoid multiple descriptions of the
software

In such a process, software development is
divided into several phases from the
software requirements phase to the
coding phase with their outputs.

At each step, it is important to try to avoid
rewriting the software description. This
rewriting is not only expensive, it is also
error-prone. Major risks of inconsistencies
between different descriptions are very
likely. This necessitates devoting a
significant effort to the compliance
verification of each level with the previous
level. The purpose of many activities, as
described in [DO-178C], is to detect the
errors introduced during transformations
from one written form to another.

1.3.2 Prevent ambiguity and lack of
accuracy in specifications

Requirements and design specifications
are traditionally written in some natural
language, possibly complemented by non-
formal figures and diagrams. Natural
language is an everyday subject of
interpretation, even when it is constrained
by requirements standards. Its inherent
ambiguity can lead to different
interpretations depending on the reader.

This is especially true for any text
describing the dynamic behavior. For
instance, how does one interpret the
combination of fragments from several
sections of a document, such as “A raises
B,” “if both B and C occur, then set D,” “if D
or Z are active, then reset A”?

1.3.3 Avoid design and coding errors

Coding is the last transformation in a
traditional development life cycle. It takes
as input the last formulation in natural
language (or pseudo-code). Since
programmers generally have a limited
understanding of the system, they are
sensitive to ambiguities in the
specification. Moreover, the code they
produce is generally not understandable
by the author of the system specification.

In the traditional approach, the combined
risk of interpretation and coding errors is
so high that a major part of the software
life-cycle’s verification effort is consumed
by code testing.

1.3.4 Allow efficient implementation of
code on target

Code that is produced must be simple,
deterministic, and efficient. It should
require as few resources as possible, in
terms of memory and execution time. It
should be easily and efficiently
retargetable to a given processor.

1.3.5 Find specification and design errors as
early as possible

Many specification and design errors are
only detected during software integration
testing.

Methodology Handbook / SCADE Suite with DO-178C Objectives / 1 - 4

One cause of this is that the requirement/
design specification is often ambiguous
and subject to interpretation. The other
cause is that it is difficult for a human
reader to understand details regarding
dynamic behavior without being able to
exercise it. In a traditional process, the first
time one can exercise the software is
during integration. This is too late in the
process. When a specification error can
only be detected during the software
integration phase, the cost of fixing it is
much higher than if it had been detected
during the specification phase.

1.3.6 Lower complexity of updates

There are many sources of changes in the
software, ranging from fixing defects to
function improvement or the introduction
of new functions. When something has to
be changed in the software, all products of
the software life cycle have to be updated
consistently, and all verification activities
must be performed accordingly.

1.3.7 Improve verification efficiency

The level of verification for safety-critical
airborne software is much higher than for
other non safety-critical software. For high-

integrity software, the overall verification
cost (including testing) may account for
up to 80 percent of the development
budget. Verification is also a bottleneck to
project completion. So, clearly, any change
to the speed and/or cost of verification has
a direct impact on project time and
budget.

1.3.8 Provide efficient way to store
Intellectual Property (IP)

A significant part of aircraft or equipment
companies’ know-how resides in software.
It is therefore of utmost importance to
provide tools and methods to efficiently
store and access Intellectual Property (IP)
relative to these safety-critical systems.
Such IP vaults contain:

• Textual system and software safety
requirements

• Graphical models of the software
requirements

• Source code
• Test cases and procedures
• Other

Methodology Handbook / SCADE Suite with DO-178C Objectives / 2 - 5

2/ Development of Safety-Critical Airborne Software

2.1 ARP 4754A and DO-178C Guidance

2.1.1 Introduction

The certification authorities1 require from
the aeronautics industry means of
compliance to safety standards for any
safety-critical software that may be used
on a commercial aircraft. [ARP 4754A] and
[DO-178C]2 provide guidance used both by
the companies developing airborne
equipment and by the certification
authorities.

2.1.2 ARP 4754A/ED-79

The Aerospace Recommended Practice
ARP 4754A is the Guidelines For
Development Of Civil Aircraft and Systems.
It is published by SAE International,
dealing with the development processes
which support certification of Aircraft
systems. Revision A was released in
December 2010. It was recognized by the
FAA and by EASA. EUROCAE jointly
released the document as [ED–79].

This document discusses the certification
aspects of highly integrated or complex
systems installed on an aircraft, taking into
account the overall aircraft operating
environment and functions. The term

“highly integrated” refers to systems that
perform or contribute to multiple aircraft-
level functions.

The material is also applicable to engine
systems and related equipment. See [ARP-
HB], chapter 3 for deeper information on
ARP 4754A.

ARP 4754A excludes specific coverage of
detailed aspects, including software and
hardware design processes beyond those
of significance in establishing the safety of
the implemented system. More detailed
coverage of the software aspects of design
are dealt within the RTCA DO-178C
document [DO-178C]. Coverage of
complex hardware aspects of design are
dealt with in document RTCA DO-254
[DO-254].

2.1.3 DO-178C/ED-12C

DO-178C, the current version of “Software
Considerations in Airborne Systems and
Equipment Certification” was published in
2011 by RTCA, Inc., in a joint effort with
EUROCAE. This replaces DO-178B as the
primary document by which certification
authorities such as FAA, EASA, Transport
Canada, CAAC, ANAC, and AR MAK will
approve all commercial software-based
aerospace systems. The new document is
called DO-178C/ED-12C and it was
completed in November 2011 and
approved by RTCA in December 2011. This

1. For example, the United States Federal Aviation Administration (FAA), the European Aviation Safety
Agency (EASA), AR MAK (Russia), Transport Canada, Brazil's Agência Nacional de Aviação Civil (ANAC), Civil
Aviation Administration of China (CAAC).

2. This section contains many quotations from DO-178C standard guidance. Some figures are directly
reproduced from the standard.

Methodology Handbook / SCADE Suite with DO-178C Objectives / 2 - 6

document was approved in July 2013 by
the FAA (see [AC 20-115C]) and in
September 2013 by the EASA (see [AMC
20-115]), making it recognized as an
acceptable “means of compliance with
the applicable airworthiness regulations
for the software aspects of airborne
systems”.

The objective of guidance is to ensure that
software performs its intended function
with a level of confidence in safety that
complies with airworthiness requirements.

The standard guidance specifies:

• Objectives for software life-cycle
processes.

• Description of activities and design
considerations for achieving those
objectives.

• Description of the evidence indicating
that the objectives have been satisfied.

2.1.4 Relationship between ARP 4754A,
ARP 4761, and DO-178C

ARP 4754A and DO-178C provide
complementary guidance:

• ARP 4754A provides guidance for the
system life-cycle processes.

• DO-178C provides guidance for the
software life-cycle processes.

The information flow between the system
and software processes is summarized in
Figure 2.1.

Figure 2.1: Relation between ARP 4754A, ARP 4761,
and DO-178C processes

DO-178C provides the list of data that is
passed from the system processes to the
software life cycle processes (see §2.2.1 in
[DO-178C]):

a “System requirements allocated to
software.

b System safety objectives.
c Software level for software components

and a description of associated failure
condition(s), if applicable.

d System description and hardware
definition.

e Design constraints, including external
interfaces, partitioning requirements,
etc.

f Details of any system activities
proposed to be performed as part of the
software life cycle. Note that system
requirement validation is not usually
part of the software life cycle processes.
The system life cycle processes are
responsible for assuring any system

System life-cycle processes (ARP 4754A)

System safety assessment process

Software life-cycle processes (DO-178C)

part of implementation processes, for ARP 4754A

System Requirements
Allocated to Software

System Safety Objectives

Software Level(s)

System Description and
Hardware Definition

Design Constraints

Definition of System
Verification Activities to be

Performed by Software Processes

Definition and Evidence of any
Software Verification Activities
Performed by System Processes

Evidence of
Acceptability of Data

Description of the
Software Architecture

Evidence of any System
Verification Activities Performed

Any Limitation of Use

Configuration
Identification Data

Data to Facilitate Integration

Software Verification Activities
to be Performed by System

Processes

Methodology Handbook / SCADE Suite with DO-178C Objectives / 2 - 7

activities proposed to be performed as
part of the software life cycle.

g Evidence of the acceptability, or
otherwise, of any data provided by the
software processes to the system
processes on which any activity was
conducted by the system processes.
Examples of such activity are the
system processes’ evaluations of:
1 Derived requirements provided by the

software processes to determine if
there is any impact on the system
safety assessment and system
requirements.

2 Issues raised by the software
processes with respect to the
clarification or correction of system
requirements allocated to software.

h Evidence of software verification
activities performed by the system life
cycle processes, if any.”

On the other hand, DO-178C provides the
information flow from Software Processes
to System Processes (see §2.2.2 in [DO-
178C]):

a “Details of derived requirements
created during the software life cycle
processes.

b A description of the software
architecture, including software
partitioning.

c Evidence of system activities performed
by the software life cycle processes, if
any.

d Problems or documentation changes,
including problems identified in the
system requirements allocated to
software and identified

incompatibilities between the hardware
and the software.

e Any limitations of use.
f Configuration identification and any

configuration status constraints.
g Performance, timing, and accuracy

characteristics.
h Data to facilitate integration of the

software into the system.
i Details of software verification activities

proposed to be performed during
system verification, if any.”

2.1.5 Development assurance levels

ARP 4754A defines guidelines for the
assignment of so-called “Development
Assurance Levels” (DAL) to the system, to
its components, and to software, with
regard to the most severe failure condition
of the corresponding part.

ARP 4754A defines a DAL for each item
and allocates a Software Level to each
software component as summarized
below.
Table 2.1: Top-Level function DAL assignment

Level Effect of anomalous behavior

A Catastrophic failure condition for the aircraft (e.g.,
aircraft crash).

B Hazardous/severe failure condition for the aircraft
(e.g., several persons could be injured).

C Major failure condition for the aircraft (e.g., flight
management system could be down, the pilot
would have to do it manually).

D Minor failure condition for the aircraft (e.g., some
pilot-ground communications could have to be
done manually).

E No effect on aircraft operation or pilot workload (e.g.,
entertainment features may be down).

Methodology Handbook / SCADE Suite with DO-178C Objectives / 2 - 8

2.1.6 DO-178C documents structure

The DO-178C Standard is composed of a
core document and a set of supplements
as illustrated in Figure 2.2.

Figure 2.2: DO-178C documents structure

DO-178C “Software Considerations in
Airborne Systems and Equipment
Certification” is the core document. It
defines a set of common objectives and
activities for each process considered in
the production of software for airborne
systems and equipment (see Section 2.1.7
and Section 2.1.8 for further information on
DO-178C objectives and processes).

This core document is completed by
supplements to be considered, depending
on the techniques used for the production
of airborne software:

• DO-331 “Model-based Development and
Verification Supplement” supplements
the guidance given in DO- 178C (core
document) for the software
components developed with model-
based techniques (see Section 2.4).

• DO-332 “Object-Oriented Technology
and Related Techniques Supplement” is
applicable when object- oriented
technology or related techniques are
used as part of the software
development life cycle. This supplement,
in conjunction with DO-178C, is

intended to provide a common
framework for the evaluation and
acceptance of object-oriented
technology (OOT) and related
techniques (RT)- based systems.

• DO-333 “Formal Methods Supplement”
is applicable in conjunction with DO-
178C when Formal Methods are used as
part of the software life cycle. Formal
methods are mathematically-based
techniques for the specification,
development and verification of
software aspects of systems.

DO-178C DOCUMENTS COMMON STRUCTURE

Each supplement has the same structure
as the core document (i.e., section titles
are the same). For any unchanged section,
the supplement explicitly states there is no
change and does not repeat the core
document.

On the other side, each supplement
identifies the additions, modifications, and
substitutions to DO-178C for a given
technique:

• New and/or revised activities,
explanatory text and software life cycle
data are highlighted in the body of the
supplement within existing sections or
dedicated new sections.

• New and/or revised objectives are
displayed in the Annex A of the
supplement.

Two other documents can also be
considered in the context of DO-178C (see
Figure 2.2):

• DO-330 “Software Tools Qualification
Considerations”: this standalone
document (it is not considered as a
supplement to DO-178C) defines the
Tool Qualification Processes for both tool
users and tool developers. It is

Core
(DO-178C)

MBDV
(DO-331) FAQ, DP

(DO-248C)

FM
(DO-333)

OOT/RT
(DO-332)

TOOLS
(DO-330)

Methodology Handbook / SCADE Suite with DO-178C Objectives / 2 - 9

interesting to note that the DO- 330
document, as a standalone document,
enables and encourages the use of this
guidance outside the airborne software
domain.

• DO-248C “Supporting Information for
DO-178C” addresses the questions of the
industry and regulatory authorities. It
contains frequently asked questions
(FAQs), discussion papers (DPs), and
rationale.

2.1.7 Objective-oriented approach

The approach of DO-178C is based on the
formulation of appropriate objectives and
on the verification that these objectives
are achieved. The DO-178C authors
acknowledged that objectives are more
essential and stable than specific
procedures. The ways of achieving an
objective may vary between companies,
and they may vary over time with the
evolution of methods, techniques, and
tools. DO-178C never states that one
should use design method X, coding rules
Y, or tool Z. DO-178C does not even impose
a specific life cycle.

The general approach is the following:

• Ensure appropriate goals are defined.
For instance:
a Software level
b Design standards

• Define procedures for the verification of
these goals. For instance:
a Verify that independence of activities

matches the software level
b Verify that design standards are met

and that the design is complete,
accurate, and traceable

• Define procedures for verifying that the
above-mentioned verification activities
have been performed satisfactorily. For
instance:
a Reviews of requirements-based test

cases and procedures is achieved
b Coverage of requirements by testing

is achieved

2.1.8 DO-178C processes overview

DO-178C structures activities as a hierarchy
of “processes”, as illustrated in Figure 2.3.
The term “process” appears several times
in the document. DO-178C defines three
top-level groups of processes:

• The software planning process that
defines and coordinates the activities of
the software development and integral
processes for a project.

• The software development processes
that produce the software product.
These processes are the software
requirements process, the software
design process, the software coding
process, and the integration process.

• The integral processes that ensure the
correctness, control, and confidence of
the software life-cycle processes and
their outputs. The integral processes are
the software verification process, the
software configuration management
process, the software quality assurance
process, and the certification liaison
process. The integral processes are
performed concurrently with the
software development processes and
the planning process throughout the
software life cycle.

Methodology Handbook / SCADE Suite with DO-178C Objectives / 2 - 10

Figure 2.3: DO-178C life-cycle processes structure

In the remainder of this document, we
focus on the development and verification
processes.

2.2 DO-178C Development Processes

The software development processes, as
illustrated below in Figure 2.4, are
composed of:

• The software requirements process,
which produces the high-level
requirements (HLR)

• The software design process, which
produces the low-level requirements
(LLR) and the software architecture
through one or more refinements of the
HLR

• The software coding process, which
produces the source code and object
code

• The integration process, which produces
executable object code and builds up to
the integrated system or equipment

Figure 2.4: DO-178C development processes

The HLR are produced directly through
analysis of system requirements and

system architecture and their allocation to
software.

System
Requirements

Process

SW Design
Process

SW Integration
Process

Integrated
Executable

Source and
Object Code

Low-Level Requirements
& Architecture

High-Level
Requirements

SW Requirements
Process

SW Coding
Process

System Requirements
Allocated to Software

System Develoment
Processes (ARP 4754A)

Software Develoment
Processes (DO-178C)

Change
requests

Change
requests

Change
requests

Change
requests

Methodology Handbook / SCADE Suite with DO-178C Objectives / 2 - 11

They include specifications of functional
and operational requirements, timing and
memory constraints, hardware and
software interfaces, failure detection and
safety monitoring requirements, as well as
partitioning requirements.

The HLR are further developed during the
software design process, thus producing
the software architecture and the LLR.
These include descriptions of the input/
output, the data and control flow, resource
limitations, scheduling and
communication mechanisms, as well as
software components. If the system
contains “deactivated” code (see Appendix
B/), the description of the means to ensure
that this code cannot be activated in the
target computer is also required.

Through the coding process, the LLR are
implemented as source code.

The source code is compiled and linked by
the integration process into an executable
code loaded on the target environment.

At all stages of the development process,
traceability is required: between system
requirements and HLR; between HLR and
LLR; between LLR and source code; and
also between requirements and tests.

2.3 DO-178C Verification Processes

2.3.1 Objectives of software verification

The purpose of the software verification
processes is “to detect and report errors
that may have been introduced during
the software development processes.” DO-
178C defines verification objectives, rather
than specific verification techniques, since
the later may vary from one project to
another and/or over time.

Testing is part of the verification processes,
but verification is not just testing: the
verification processes also rely on reviews
and analyses. Reviews are qualitative and
comply with DO-178C (§6.3), whereas
analyses are more detailed and should be
reproducible (e.g., compliance with coding
standards).

Verification activities cover all the
processes, from the planning process to
the development processes; there are
even verifications of the verification
activities.

Methodology Handbook / SCADE Suite with DO-178C Objectives / 2 - 12

2.3.2 Reviews and analyses of HLR

The objective of reviews and analyses is to
confirm that the HLR satisfy the following:

• Compliance with system requirements
• Accuracy and consistency: each HLR is

accurate, unambiguous and sufficiently
detailed; requirements do not conflict
with each other

• Compatibility with target computer
• Verifiability: each HLR has to be

verifiable
• Compliance with standards as defined

by the planning process
• Traceability with the system

requirements
• Algorithm accuracy

2.3.3 Reviews and analyses of LLR and
architecture

The objective of these reviews and
analyses is to detect and report errors
possibly introduced during the software
design process. These reviews and
analyses confirm that the software LLR
and architecture satisfy the following:

• Compliance with high-level
requirements: the software LLR satisfy
the software HLR

• Accuracy and consistency
• Compatibility with target computer: no

conflicts exist between the software
requirements and the hardware/
software features of the target
computer, especially the use of
resources (e.g., bus loading), system
response times, and input/output
hardware

• Verifiability: each LLR can be verified

• Compliance with Software Design
Standards as defined by the software
planning process

• Traceability: the objective is to ensure
that all HLR were taken into account in
the development of the LLR

• Algorithm aspects: ensure the accuracy
and behavior of the proposed
algorithms, especially in the area of
discontinuities (e.g., mode changes,
crossing value boundaries)

• The Software Architecture is
compatible with the HLR, is consistent
and compatible with the target
computer, is verifiable, and conforms to
standards

• Software partitioning integrity is
confirmed

2.3.4 Reviews and analyses of the source
code

The objective is to detect and report errors
that may have been introduced during the
software coding process. These reviews
and analyses confirm that the outputs of
the software coding process are accurate,
complete, and can be verified. Primary
concerns include correctness of the code
with respect to the LLR and the software
architecture, and compliance with the
Software Code Standards. The reviews
should include:

• Compliance with low-level
requirements: the source code is
accurate and complete with respect to
the software LLR; no source code
implements an undocumented function

• Compliance with software architecture:
the source code matches the data flow
and control flow defined in the software
architecture

Methodology Handbook / SCADE Suite with DO-178C Objectives / 2 - 13

• Verifiability: the source code does not
contain unverifiable statements and
structures, and the code does not have
to be altered to test it

• Compliance with standards: the
Software Code Standards (defined by
the software planning process) were
followed during the development of the
code, especially complexity restrictions
and code constraints that would be
consistent with the system safety
objectives. Complexity includes the
degree of coupling between software
components, the nesting levels for
control structures, and the complexity of
logical or numeric expressions. This

analysis also ensures that deviations to
the standards are justified.

• Traceability: the source code
implements all software LLR

• Accuracy and consistency: the objective
is to determine the correctness and
consistency of the source code,
including stack usage, fixed-point
arithmetic overflow and resolution,
resource contention, worst-case
execution timing, exception handling,
use of non initialized variables or
constants, unused variables or
constants, and data corruption due to
task or interruption conflicts

Methodology Handbook / SCADE Suite with DO-178C Objectives / 2 - 14

2.3.5 Software testing process

Testing of aeronautics software has two
complementary objectives. One objective
is to demonstrate that the software
satisfies its requirements. The second

objective is to demonstrate, with a high
degree of confidence, that all errors, which
could lead to unacceptable failure
conditions as determined by the system
safety assessment process, have been
removed.

Figure 2.5: DO-178C testing process

There are three types of testing activities:

• Low-level testing: to verify that each
software component complies with its
LLR

• Software integration testing: to verify
the interrelationships between software
requirements and components and to
verify the implementation of the
software requirements and software

components within the software
architecture

• Hardware/software integration testing:
to verify correct operation of the
software in the target computer
environment

As shown in Figure 2.5, DO-178C dictates
that all test cases, including low-level test
cases, be requirements-based; namely

From Software
Development

Process

Additional
Verification

Considerations

Software
Requirements-Based

Test Generation

Low-Level Tests Software
Integration Tests

Hardware /
Software

Integration Tests

Extraneous, Dead,
and Deactivated
Code Resolution

Software Requirements-Based
Test Coverage Analysis

Software Structural
Coverage Analysis

End of Testing

To Software
Development

Process

Direct Path

Conditional Path

Methodology Handbook / SCADE Suite with DO-178C Objectives / 2 - 15

that all test cases be defined from the
requirements and the error sources
inherent to the software development
processes, but never from the code. When
it is not possible to verify specific software
requirements by exercising the software in
a realistic test environment, other means
and their justification shall be provided
according to DO-178C, §6.2b as illustrated
by Additional Verification Considerations
in Figure 2.5.

TEST COVERAGE ANALYSIS

Test coverage analysis is a two-step
activity:

1 Requirements-based test coverage
analysis determines how well the
requirement-based testing covered the
software requirements. The main
purpose of this step is to verify that all
requirements have been implemented.
Requirements-based Test coverage
analysis shall be considered for both
HLR and LLR.

2 Structural coverage analysis determines
which code structures including
interfaces between components, are
exercised by requirements-based test
procedures. Its purposes are:
• Ensures all code structures, including

interfaces, was executed at least once
• Detects untested functions which

could be unintentional
• Identifies extraneous code, including

dead code (see glossary in Appendix B/
)

• Helps to confirm if deactivated code is
truly deactivated

• Serves as completion criteria for
testing efforts

STRUCTURAL COVERAGE RESOLUTION

If structural coverage analysis reveals code
structures including interfaces that were
not exercised, resolution is required:

• If it is due to shortcomings in the test
cases, then test cases should be
supplemented or test procedures
changed.

• If it is due to inadequacies in the
requirements, then the requirements
must be changed and test cases
developed and executed.

• If it is extraneous code, including dead
code (i.e., it is not traceable to any
system or software requirement and its
presence is an error), then this code
should be removed.

• If it is deactivated code (it cannot be
executed, but its presence is not an
error):
• If it is not intended to be executed in

any configuration, then analysis and
testing should show that the means
by which such code could be
inadvertently executed are prevented,
isolated, or eliminated.

• If it is only executed in certain
configurations, the operational
configuration for execution of this
code should be established and
additional test cases should be
developed to satisfy coverage
objectives.

STRUCTURAL COVERAGE CRITERIA

The structural coverage criteria that have
to be achieved depend on the software
level:

Methodology Handbook / SCADE Suite with DO-178C Objectives / 2 - 16

• Level A: MC/DC (Modified Condition/
Decision Coverage) is required,
meaning:
• every entry and exit point in the

program was invoked at least once;
• every condition in a decision has

taken all possible outcomes at least
once;

• every decision in the program has
taken all possible outcomes at least
once;

• each condition in a decision was
shown to independently affect that
decision’s outcome. This may be
shown by: (1) varying just that
condition while holding fixed all other
possible conditions, or (2) varying just
that condition, while holding fixed all
other possible conditions that could
affect the outcome.

• Level B: Decision Coverage is required,
meaning every entry and exit point in
the program was invoked at least once

and every decision has taken all possible
outcomes at least once (e.g., the
outcome of an “if” construct was true
and false, even if there is no “else”).

• Level C: Statement Coverage is required,
meaning every statement in the source
code was exercised.

For instance, the following fragment
requires four test cases for Level A, as
shown below in Table 2.2.

If A or (B and C)
Then do action1
Else do action2
Endif

Table 2.2: Example of test cases satisfying MC/DC

Case A B C Outcome

1 FALSE FALSE ANY FALSE

2 TRUE ANY ANY TRUE

3 FALSE TRUE TRUE TRUE

4 FALSE TRUE FALSE FALSE

Methodology Handbook / SCADE Suite with DO-178C Objectives / 2 - 17

2.4 DO-331 Model-Based Development
and Verification Processes

Model-based techniques are more and
more used in the design of safety critical
software components because they are
considered as a very efficient approach to
develop complex software while
increasing productivity. The DO-331
supplement in conjunction with the DO-
178C core document (see §2.1.6) are the
applicable standards when model-based
techniques are used for the development
and verification of a given software
component.

2.4.1 Model Definition

According to the DO-331 glossary, a model
is “an abstract representation of a given
set of aspects of a system that is used for
analysis, verification, simulation, code
generation, or any combination thereof. A
model should be unambiguous,
regardless of its level of abstraction.”

DO-331, MB.1.0 addresses model(s) that
have the following characteristics:

a “The model is completely described
using an explicitly identified modeling
notation. The modeling notation may
be graphical and/or textual.

b The model contains software
requirements and/or software
architecture definition.

c The model is of a form and type that is
used for direct analysis or behavioral

evaluation as supported by the
software development process or the
software verification process.”

2.4.2 Model Categorization

DO-331, MB.1.6.2 defines two types of
models: specification model and design
model.

A Specification Model represents “high-
level requirements that provides an
abstract representation of functional
performance, interface, or safety
characteristics of software components”. It
supports an understanding of software
functionality and does not prescribe a
specific software implementation or
architecture.

A design model defines “any software
design such as low-level requirements,
software architecture, algorithms,
component internal data structures, data
flow and/or control flow.” It describes in
particular the internal details of a given
software component.

Moreover, two important properties are
attached to these concepts of model:

• A model cannot be categorized as both
specification model and design model;

• Whatever the model (specification or
design), there must be requirements
above the model. They should be
external to the model and should be a
complete set of requirements and
constraints.

2.4.3 Impact of Model-Based Development
in DO-178C Development Processes

DO-331 Table MB.1-1 provides examples of
Model usage in the context of industrial
projects that illustrate different strategies
for Model-Based Development (MBD).

In the context of “MB Example 1”, the DO-
178C traditional development process such
as described in Section 2.2 can be
significantly improved as follows:

• Software requirements are usually
textual requirements supplemented by
pictures, when appropriate, that are
derived from System Requirement
Allocated to Software (SRATS)

• A design model is developed for LLR
and Architecture

• Source code is developed with the
support of an automatic code generator

2.4.4 Impact of Model-Based Development
in DO-178C Verification Processes

Various verification techniques are
available when using model-based
development. Model Simulation can be
considered as one of the most efficient.

DO-331 provides a precise definition and
some specific guidance in §MB.6.8: Model
Simulation is defined as “The activity of
exercising the behavior of a model using a
model simulator”. In this context, the
model simulator may or may not be
executing code representative of the

Table 2.3: Model usage examples (DO-331 Table MB.1-1)

Process generating life-cycle
data

MB Example 1 MB Example 2 MB Example 3 MB Example 4 MB Example 5

System Requirements and
System Design Processes

Requirements
allocated to
software

Requirements
from which the
model is
developed

Requirements
from which the
model is
developed

Requirements
from which the
model is
developed

Requirements
from which the
model is
developed

Design model

Software Requirements and
Software Design Processes

Requirements
from which the
model is
developed

Specification
Model

Specification
Model

Design model

Design model Design model Textual
description

Software Coding Processes Source code Source code Source code Source code Source code

Methodology Handbook / SCADE Suite with DO-178C Objectives / 2 - 19

target code. Simulation is different from
testing which is the execution of the “real”
Executable Object Code (EOC) on target.

Model Simulation supports the verification
of objectives of DO-331, Table MB.A-4, like:

• Compliance with HLR for models
containing LLR

• Accuracy and consistency
• Verifiability
• Algorithm aspects

On the other hand, Model Simulation
cannot be used to satisfy objectives such
as compatibility with the target computer,
conformance to standards, traceability or
partitioning integrity. Reviews and
analyses are then required to complete
the model verification.

If Model Simulation is used for verification
to satisfy a DO-178C objective, the model
simulator shall be qualified as a verification
tool (see Section 2.5 for more information
on tool qualification) and new DO-331
objectives shall be considered during the
verification of the software LLR. In
particular, the following objectives are
considered in addition to the existing
objectives described in Section 2.3.3:

• “Simulation cases are correct” (Table
MB.A-4 objective MB14)

• “Simulation procedures are correct”
(Table MB.A-4 objective MB15)

• “Simulation results are correct and
discrepancies explained” (Table MB.A-4
objective MB16)

2.4.5 Model coverage analysis for design
models

Model coverage analysis concerns the so-
called “design models” (as opposed to
“specification models”). Model coverage

analysis determines which requirements
expressed by the design model were not
exercised by verification based on the
requirements from which the design
model was developed. This analysis may
assist in particular in finding unintended
functionality in the design model.

Model coverage analysis is different from
structural coverage analysis. Both model
coverage and structural code coverage
shall be achieved to satisfy objectives of
DO-331 Table MB.A-7. As stated in DO-331
FAQ-11, the implication of model level
coverage to the generated code level
allows to satisfy structural code coverage
objectives.

DO-331 objective MB.A-7#4 identifies
model coverage (§6.7) as a supporting
activity for assessing coverage of the low-
level requirements contained in a design
model. Moreover, as stated in DO-331
MB.6.7.2, model coverage analysis
contributes to the detection and
resolution of:

a Shortcomings in requirements-based
verification cases or procedures

b Inadequacies or shortcomings in
requirements from which the design
model was developed

c Derived requirements expressed by the
model

d Deactivated functionality expressed by
the design model

e Unintended functionality expressed by
the design model

2.4.6 Model coverage criteria

There is a large diversity of modeling
notations that differ significantly regarding
for instance the following aspects:

Methodology Handbook / SCADE Suite with DO-178C Objectives / 2 - 20

• The modeling notations range from
non-formal (e.g., UML/SysML) to formal
(e.g., Scade, event-B)

• They may be based on various concepts
and representations such as data flow,
state machines, sequence charts

• They may be synchronous (e.g., Scade)
and/or asynchronous (e.g., UML)

Even if it is not possible to impose specific
detailed model coverage criteria due to
various modeling notations, [DO-331], Table
MB.6-1 provides an example of criteria that
are relevant to assess model coverage
according to the objectives defined in
[DO-178C], see §6.4.2.1 and §6.4.2.2.

General principles such as coverage of all
characteristics of the requirements (from
which the design model is developed)
functionality, coverage of equivalence
classes and boundary/singular values for
numeric data, and coverage of all derived
requirements are highlighted in the
example from [DO-331], Table MB.A-6.

The applicant may use any alternative
coverage criteria provided these criteria
comply with the objectives defined in [DO-
178C], see § 6.4.2.1 and §6.4.2.2.

These criteria should be defined in the
Software Verification Plan (SVP) of the
applicant.

2.5 DO-330 Software Tools
Qualification Considerations

Efficient software development and
verification techniques (including model-
based) rely on tools to automate, reduce,
or eliminate some activities.

The DO-330 (see Section 2.1.6) glossary
defines a tool as “A computer program or a
functional part thereof, used to develop,

transform, test, analyze, produce, or modify
another program, data, or its
documentation”. Typical examples are
automated code generators, compilers or
test tools.

Tool qualification guidance was expanded
and separated from the DO-178C core
document for the following main reasons:

• The nature of tools is different from the
nature of software using the tools. It is
not relevant to apply airborne-related
guidance in the context of the
development and verification of a
software tool.

• This standalone document can be used
by other domains than the airborne
domain, for instance, in the context of
system and/or hardware tools.

2.5.1 Purpose of tool qualification

Qualification of a tool is needed when
processes required by DO-178C are
eliminated, reduced or automated by the
use of a software tool without its output
being verified.

The purpose of the tool qualification
process is to obtain confidence in the tool
functionality. The tool qualification effort
varies based upon the potential impact
that a tool error could have on the system
safety and upon the overall use of the tool
in the software life cycle process. The
higher the risk of the tool error adversely
affects system safety, the higher the rigor
is required for tool qualification.

Tool qualification is the process necessary
to obtain certification credit for a tool. This
credit may only be granted within the
context of a project requiring approval.

Methodology Handbook / SCADE Suite with DO-178C Objectives / 2 - 21

2.5.2 Tool criteria

The qualification level of a tool is based on
the tool use and its potential impact in the
software life cycle process. DO-178C core
section 12.2.2 defines 3 criteria to
determine the impact of a tool:

• Criteria 1: A tool whose output is part of
the resulting software and thus could
insert an error.

• Criteria 2: A tool that automates
verification process(es) and thus could
fail to detect an error, and whose output
is used to justify the elimination or
reduction of:
• Verification process(es) other than

that automated by the tool, or;
• Development process(es) (which

could have an impact on the resulting
software).

• Criteria 3: A tool that, within the scope of
its intended use, could fail to detect an
error.

Moreover, DO-330, §1.5.3.3 provides
additional considerations about the tool
criteria selection and some examples:

“Criteria 1 is applied to the tools that
automatically produce a part of the
outputs of one of the software
development processes, whatever the
input and output format are. This criteria
encompasses the tools that transform a
higher level of requirements to a lower
requirement level (or same level but in a
different formalism), to Source Code, to
data files, to configuration files, or to
Executable Object Code. [...]

Criteria 2 and Criteria 3 are applied to all
tools that verify or analyze software life
cycle data, compute software

characteristics, etc. Application of one of
these two criteria differs based on the
certification/approval credit claimed by
the applicant.

a If the certification/approval credit claim
is only for the objective directly satisfied
by the activity performed by the tool,
criteria 3 is applied.

b An alternative for the applicant is to
claim that other objectives are also
satisfied or partially satisfied through
the use of the tool. In this case, criteria 2
applies.”

A typical example can be that a static code
analyzer may be used to automate some
verification of Source Code review. Criteria
3 could be applied based on this tool’s
usage and credit claimed. However, if the
applicant claims not to include some
specific mechanisms in the resulting
software in order to detect and treat
possible overflows and run-time errors
based on the confidence of the tool, then
Criteria 2 becomes applicable. In this case,
it corresponds to “a reduction of software
development process(es)”.

2.5.3 Tool Qualification Levels

The Tool Qualification Level (TQL) for a
given tool is based on the tool qualification
criteria and the level of the software
application (as defined above).

DO-330 identifies five levels of TQL as
follows. TQL-1 is the most demanding level
whereas TQL-5 is the least demanding one
as presented in the following table.

Software Level
Criteria

1 2 3

A TQL-1 TQL-4 TQL-5

Methodology Handbook / SCADE Suite with DO-178C Objectives / 2 - 22

2.5.4 Tool Stakeholders

One major improvement of DO-330 with
regard to DO-178B is a clear separation of
responsibility between the tool user and
the tool developer. This is particularly
relevant in the context of COTS tool
qualification.

Two roles are identified in DO-330, §11.3.1:

• The Tool developer is in charge of
developing, verifying, documenting, and
producing the tool

• The Tool user is in charge of selecting,
using, and qualifying the tool in the
scope of a given software application

Both roles have different activities to
consider and objectives to satisfy.

These objectives for tools are summarized
in Annex A Tables. These tables are similar
to the ones defined in DO-178C for
software application. However there are
some differences that are listed below:

• Tables are numbered as T-x, rather than
A-x to distinguish them from DO-178C

• DO-330 defines 11 Annex A Tables
(instead of 10): table T-0 is a DO-330 tool
specific table (there is no equivalent in
DO-178C). This table includes in
particular seven objectives to address
the tool operation from the user’s
perspective.

In the context of COTS tool qualification,
DO- 330, §11.3.2 and its associated Table 11-1
identify the objectives and activities
typically applicable to the tool developer
highlighting the need of providing tool
qualification documents such as
developer-TOR, TQP, TCI and TAS.

On the other side, DO-330, §11.3.3 and its
associated Table 11-2 provide information
on the typical tool user objectives and
activities. From a user’s perspective,
documents such as TOR, TQP, TCI, and TAS
are considered.

For further information on Tool
Qualification Processes and Data, please
refer to DO-330.

B TQL-2 TQL-4 TQL-5

C TQL-3 TQL-5 TQL-5

D TQL-3 TQL-5 TQL-5

Software Level
Criteria

1 2 3

Methodology Handbook / SCADE Suite with DO-178C Objectives / 3 - 23

3/ Model-Based Development with SCADE

3.1 What is SCADE?

SCADE ORIGIN AND APPLICATION DOMAIN

SCADE is a product family that includes
the following product lines:

• SCADE Architect for the analysis and
design of software architecture in
synchronization with software
subsystem design;

• SCADE Suite for the design of
embedded control applications;

• SCADE Display for the design of
embedded displays;

• SCADE Test for the dynamic verification
of the models and the code;

• SCADE LifeCycle for the application life
cycle management of these
applications.

The name SCADE stands for “Safety-
Critical Application Development
Environment”. When spelled Scade it
refers to the language on which SCADE
Suite is based.

In its early academic inception, the Scade
language was designed for the
development of safety-critical software. It
relies on the theory of languages for real-
time applications and, in particular, on the
Lustre and Esterel languages as described
in [Lustre] and [Esterel]. The Scade
language has evolved from this base and
currently is a formal notation spanning a
full set of features needed to model
complex, hard real-time critical
applications.

From its early industrial stages, SCADE
Suite was developed in conjunction with
companies developing critical software.
SCADE Suite was used on an industrial
basis for the development of critical
software, such as flight control software
(Airbus), Full Authority Digital Engine
Control aircraft engine control
(Pratt&Whitney), nuclear power plant
safety systems (Rolls-Royce Civil Nuclear),
and railway switching systems (Hitachi Rail
STS)..

SCADE Suite addresses the applicative
part of software as illustrated in Figure 3.1.
This is usually the most complex and
changeable aspect of software. It typically
represents 60 percent to 90 percent of the
embedded software.

Figure 3.1: Applicative part of software

A BRIDGE BETWEEN CONTROL ENGINEERING AND
SOFTWARE ENGINEERING

Control engineers and software engineers
typically use quite different notations and
concepts:

• Control engineers describe systems and
their controllers using block diagrams
and transfer functions (s form for

Methodology Handbook / SCADE Suite with DO-178C Objectives / 3 - 24

continuous time, z form for discrete
time), as shown below in Figure 3.2.

Figure 3.2: Control engineering view of a Controller

• Software engineers describe their
programs in terms of tasks, flow charts,
and algorithms, as shown below in
Figure 3.3.

Figure 3.3: A software engineering view

These differences make transition from
control engineering specifications to
software engineering specifications
complex, expensive, and error-prone.

To address this problem, SCADE Suite
offers rigorous software constructs that
reflect control engineering constructs:

• Its data flow structure fits the block
diagram approach.

• Its clocks support formal expression of
sampling rates.

• Its time operators fit the z operator of
control engineering. For instance, z-1, the
operator of control engineering
(meaning a unit delay), has an
equivalent operator called “pre” in
Scade.

3.2 SCADE Modeling Techniques

3.2.1 Modeling behavior with SCADE Suite

3.2.1.1 Familiarity and accuracy reconciled

SCADE Suite uses a combination of two
specification formalisms that are familiar
to control engineers:

• State machines to specify modes and
transitions in an application (e.g., taking
off, landing, etc.)

• Data flow diagrams to specify control
algorithms (control laws, filters, etc.)

The modeling techniques of SCADE Suite
add a very rigorous view of these well-
known but often insufficiently defined
formalisms. The Scade language has a
formal foundation and provides a precise
definition of concurrency; it ensures that
all programs generated from Scade
models behave deterministically. The
product allows for automatic generation of
C/Ada code from the above formalism.

X z() x n()z n–

n ∞–=

∞

= (bilateral z transform)

Methodology Handbook / SCADE Suite with DO-178C Objectives / 3 - 25

3.2.1.2 Scade operator

The basic Scade building block is called an
operator. It is either a pre-defined operator
(e.g., +, delay) or a user-defined operator
that decomposes itself using other
operators. This allows to build complex
applications in a structured way. An
operator can be represented graphically
(see Figure 3.4) or textually (see Table 3.1).

Figure 3.4: Graphical notation for an integrator
operator

An operator is a functional module made
of the following components:

Actually, the textual notation is the
reference, which is stored in files and used
by all tools; the graphical representation is
a projection of the textual notation, taking
into account secondary layout details.

In SCADE Suite, a user-friendly editing
mode supports graphical and textual
operators.

An operator is fully modular:

• There is a clear distinction between its
interface and its body

• There can be no side-effects from one
operator to another one

• The behavior of an operator does not
depend on its context of use

• An operator can be used safely in several
places in the same model or in another
one

3.2.1.3 Data flow diagrams for continuous
control

By “continuous control”, we mean regular
periodic computation such as sampling
sensors at regular time intervals,
performing signal-processing
computations on their values, computing
control laws and outputting the results.
The same sequential function applies to
each computation cycle.

Table 3.1: Components of Scade functional modules: operators

Component Textual Notation for an Integrator Operator 1 Graphical Notation

Formal interface node IntegrFwd(U: real ; hidden Period: real)
 returns (Y: real) ;

Arrows and rectangles

Local variables
declarations

var
delta : real ;
last_Y : real;

Named wires

Equations delta = u * Period ;
Y = delta + last_Y ;
last_Y = fby(Y , 1 , 0.0) ;

Network of operator calls

1. In the Scade language, an operator that needs to memorize variables from one cycle to the next (e.g., a counter) is called
a node. Otherwise it is called a function.

Methodology Handbook / SCADE Suite with DO-178C Objectives / 3 - 26

In the Scade language, continuous control
is graphically specified using data flow
diagrams, such as the one illustrated in
Figure 3.5 below.

Figure 3.5: Sample of model data flows from a Flight Control system

Operators compute mathematical
functions, filters, and delays, while arrows
denote data flowing between operator
instances. Operator instances that have no
functional dependency are computed
concurrently. Flows may carry numeric,
Boolean, enumeration, or structured
values used or produced by operators.

Operators are fully hierarchical: operators
at a description level can themselves be
composed of smaller operators
interconnected by local flows. In models,
one can zoom into hierarchical operators.
Hierarchy makes it possible to break
design complexity by a divide-and-
conquer approach and to design reusable
library operators.

The Scade language is modular: the
behavior of an operator does not vary from
one context to another.

The Scade language is strongly typed, in
the sense that each data flow has a type,
and that type consistency in models is
verified by the SCADE Suite tools.

SCADE Suite makes it possible to deal
properly with issues of timing and
causality. Causality means that if data x
depends on data y, then y has to be
available before the computation of x
starts. A recursive data circuit poses a
causality problem, as shown in Figure 3.6
below, where the “Throttle” output
depends on itself via the
ComputeTargetSpeed and
ComputeThrottle operators. With SCADE
Suite Checker, semantic checks3 detect
this error and signal that this output has a
recursive definition.

Figure 3.6: Detection of a causality problem

3. SCADE Suite Checker is provided with SCADE Suite for running syntactic and semantic checks during
software modeling.

Methodology Handbook / SCADE Suite with DO-178C Objectives / 3 - 27

As shown in Figure 3.7, inserting an FBY
(delay with initial value) operator in the
feedback loop solves the causality
problem, since the input of the
ComputeTargetSpeed operator is now the
value of “Throttle” from the previous cycle.

Figure 3.7: Functional expression of concurrency

The Scade language provides a simple and
clean expression of concurrency and
functional dependency at the functional
level, as follows:

• Operators SetRegulationMode and
ComputeTargetSpeed are functionally
parallel; since they are independent, the
relative computation order of these
operators does not matter (because, in
the Scade language, there are no side-
effects).

• ComputeThrottle functionally depends
on an output of ComputeTargetSpeed.
SCADE Suite KCG Code Generator takes
this into account: it generates code that
executes ComputeTargetSpeed before
ComputeThrottle. The computation
order is always up-to-date and correct,
even when dependencies are very
indirect and when the model is
updated. The users do not need to
spend time performing tedious and
error-prone dependency analyses to
determine sequencing manually. They
can focus on functions rather than on
coding.

Another important feature of the
language is related to the initialization of
flows. In the absence of explicit
initialization for instance by using the ->
(Init) operator, SCADE Suite semantic
check emits errors, as illustrated in Figure
3.8 for a counter model.

Figure 3.8: Detection of a flow initialization problem

As shown in Figure 3.9, inserting an Init
operator in the feedback loop solves the
initialization problem. The second
argument of the + operator is 0 in step 1
(initial value), and the previous value of
flow N in steps 2, 3, etc. Mastering initial
values is indeed a critical subject for critical
software.

Figure 3.9: Initialization of flows

3.2.1.4 State Machines for discrete control

By “discrete control” we mean changing
behavior according to external events
originating either from discrete sensors
and user inputs or from internal program
events, for example, value threshold
detection. Discrete control is used when
behavior varies qualitatively as a response
to events. This is characteristic of modal

Functional concurrency Dependency

Methodology Handbook / SCADE Suite with DO-178C Objectives / 3 - 28

human-machine interfaces, alarm
handling, complex mode handling, or
communication protocols.

As a topic of very extensive studies over
the last fifty years, state machines and
their theory are well-known and accepted.
However, in practice, they have not been
adequate even for medium-size
applications, since their size and
complexity tend to explode very rapidly.
For this reason, a richer concept of
hierarchical state machines was
introduced.

States can be either simple states or
macro states, themselves recursively
containing a full state machine. When a
macro state is active, so are the state
machines it contains. When a macro state
is exited by taking a transition out of its
boundary, the macro state is exited and all
the active state machines it contains are
preempted, whichever state they were in.

State machines communicate by
exchanging signals that may be scoped to
the macro state that contains them.

The definition of state machines
specifically forbids dubious constructs
found in other hierarchical state machine
formalisms: transitions crossing macro
state boundaries, transitions that can be
taken halfway and then backtracked, and
so on. These are non modular,
semantically ill-defined, and very hard to
figure out, hence inappropriate for critical
designs. They are usually not
recommended by methodology
guidelines.

3.2.1.5 Combining data and control flows

Large applications contain cooperating
continuous and discrete control parts.
SCADE Suite gives developers the ability to
freely and rigorously combine and nest
data flows and control flows, as shown in
Figure 3.10.

Methodology Handbook / SCADE Suite with DO-178C Objectives / 3 - 29

Figure 3.10: Mixed data and control flows from Flight Control

3.2.1.6 SCADE data typing

The Scade language is strongly typed.

The following data types are supported;

• Predefined types: Boolean, Integer (int 8,
uint8, int16 uint16, int 32, uint32, int64,
uint64), Real (float 32, float 64),
Enumeration, Character.

• Structured types:
• Structures make it possible to group

data of different types. Example:

• Arrays group data of a homogeneous
type. They have a static size. Example:

• Imported types that are defined in C or
Ada (to interface with legacy software)

All variables are explicitly typed, and type
consistency is verified by SCADE Suite
semantic checks.

3.2.2 SCADE Suite cycle-based intuitive
computation model

The cycle-based execution model of
SCADE Suite is a direct computer
implementation of the ubiquitous
sampling-actuating model of control
engineering. It consists in performing a
continuous loop of the form illustrated in
Figure 3.11 below.

In this loop, there is a strict alternation
between environment actions and
program actions. Once the input sensors
are read, the cyclic function starts

Ts = [x: int, y: real];

tab = real^3;

Methodology Handbook / SCADE Suite with DO-178C Objectives / 3 - 30

computing the cycle outputs. During that
time, the cyclic functions are blind to
environment changes.4 When the outputs
are ready, or at a given time determined
by a clock, the output values are fed back
to the environment, and the program
waits for the start of the next cycle.

The external environment shall ensure
that the cyclic function of the whole
system is blind to environment changes.

Figure 3.11: Cycle-based execution model of SCADE

CONCEPT OF CYCLE IN SCADE SUITE

In a Scade specification, each operator and
flow has a so-called clock (the event
triggering its cycles) and all operators that
do not exhibit data flow dependencies act
concurrently (see Figure 3.7). Operators can
all have the same clock, or they can have
different clocks, which subdivide a master
clock. At each of its clock cycle, an operator
reads its inputs and generates its outputs.
If an output of operator A is connected to
an input of operator B, and A and B have
the same cycle, the outputs of A are used
by B in the same cycle, unless an explicit
delay is added between A and B. This is
the essence of the semantics of the Scade
language.

State machines share the same notion of
cycle. For a simple state machine, a cycle
consists in performing the adequate
transition from the current state to this
cycle’s active state and compute actions in
the active state. Concurrent state
machines communicate with each other,
receiving signals sent by other machines
and possibly sending signals back. Finally,
data flow diagrams and state machines in
the same design also communicate at
each cycle.

BENEFITS OF CYCLE-BASED COMPUTATION
MODEL

This cycle-based computation model
carefully distinguishes between logical
concurrency and physical concurrency.
The application is described in terms of
logically concurrent activities, data flow
diagrams or state machines. Concurrency
is resolved at code generation time, and
the generated code remains standard,
sequential, and deterministic C/Ada code,
all contained within a very simple subset
of this language. What matters is that the
final sequential code behaves exactly as
the original concurrent specification,
which can be formally guaranteed. There
is no overhead for communication, which
is internally implemented using well-
controlled shared variables without any
context switching.

3.2.3 SCADE Suite as a model-based
development environment

SCADE Suite is an environment for the
development of safety-critical aeronautics
software.

4. It is still possible for interrupt service routines or other task to run, as long as they do not interfere with the
cyclic function.

Methodology Handbook / SCADE Suite with DO-178C Objectives / 3 - 31

• SCADE Suite models are usually
considered as design model. They
mainly represent the software low-level
requirements and software architecture.
Such models rely on a formally defined
notation.

• Models can be managed under
configuration control.

• Documentation is automatically and
directly generated from models: it is
correct and up-to-date by construction.

• Syntactic and semantic checking can be
performed to check that the models
follow the rules of the Scade notation
syntax and semantics.5

• Models can be exercised by simulation
to verify dynamically their behavior
according to upper-level requirements.

• Model coverage analysis can be
performed to assess how thoroughly the
model was tested and to detect
unintended functions in the model.

• Formal verification techniques can be
directly applied to models to detect
corner cases defects or to prove safety
properties.

• Time and stack analysis can be
performed in order to perform early
verification of compatibility in term of
execution time and memory size
between any model and the target
platform.

• Target compatibility with SCADE Suite
KCG- generated code can also be
verified on a representative code sample
(using SCADE Suite Compiler
Verification Kit) in particular to
anticipate potential issues with the
cross-compiler used to generate the
target EOC.

• Code is automatically and directly
generated from models with the KCG
qualified Code Generator: the source
code complies with the semantics of the
input model.

• SCADE Suite generated code can be
wrapped in an RTOS task, thus
implementing the needed cyclic
function.

• The DO-178C Certification Kit provides
all of the evidence that is needed to
qualify SCADE Suite KCG at DO-330/
TQL-1 (see Appendix C/).

SCADE Suite applies these “golden rules”:

• Share unique and accurate
specifications.

• Do things once: Do not rewrite
descriptions from one activity to
another. For instance, between software
architecture and software design,
between simulation and target testing,
between module software design and
code.

• Do things right at the outset: Detect
errors in the early stages of a project.

BENEFITS OF DESIGN-VERIFY-GENERATE
PRINCIPLE

SCADE Suite allows saving time spent on
significant verification efforts because
models can be verified as soon as they are
available (even in parts) thus avoiding
situations where code has to be developed
before any verification can start and every
error that is detected requires a lengthy
change cycle.

BENEFITS OF “DO THINGS ONCE” PRINCIPLE

SCADE Suite models formalize a
significant part of the software
architecture and design. The model is

5. In SCADE Suite, use SCADE Suite Checker.

Methodology Handbook / SCADE Suite with DO-178C Objectives / 3 - 32

written and maintained once in the
project and shared among team
members. Expensive and error-prone
rewriting is thus avoided; interpretation
errors are minimized. All members of the
project team, from the specification team
to the review and testing teams, can share
models as a reference.

This formal definition can even be used as
a contractual requirement document with
subcontractors. Basing the activities on an
identical formal definition of the software
may save a lot of rework, and acceptance
testing is faster using simulation scenarios.

The remainder of this handbook explains
how full benefit can be obtained using
SCADE Suite in a DO-178C project.

3.2.4 SCADE modeling and safety benefits

In conclusion to 3.2, we have shown that
SCADE Suite strongly supports safety at
model level because:

• The Scade language is rigorously
defined. Its interpretation does not
depend on readers or any tool. It relies
on more than 25 years of academic
research ([Esterel], [Lustre]). The
semantic kernel of Scade is very stable: it
has not changed over the last 25 years.

• The Scade language is simple. It relies
on very few basic concepts and simple
combination rules of these concepts.

• Control structures remain at a high-level
of abstraction. For example, array

operations in SCADE Suite are expressed
as such and do not require low-level
loops and indexes. There is no need for
goto's, no need for the creation of
memory at runtime, no way to
incorrectly access memory through
pointers or an index out of bounds in an
array. Moreover, these principles are
reflected in the generated code out of
SCADE Suite KCG.

• The Scade language contains specific
features oriented towards safety: strong
typing, mandatory initialization of flows,
and so on.

• SCADE Suite models are deterministic. A
system is deterministic if it always reacts
in the same way to the same inputs
occurring with the same timing. In
contrast, a non-deterministic system
can react in different ways to the same
inputs, the actual reaction depending
on internal choices or computation
timings.

• The Scade language provides a simple
and clean expression of concurrency at
functional level (data flows express
dependencies between operators).
Within a model, this avoids the
traditional problems of deadlocks and
race conditions.

• SCADE Suite performs the complete
verification of language syntactic and
semantic rules, such as type and clock
consistency, initialization of data flows,
or causality in models.

Methodology Handbook / SCADE Suite with DO-178C Objectives / 4 - 33

4/ Software Development Activities with SCADE Suite

4.1 Overview of Software Development
Activities

A typical SCADE Suite software
development process is a combination of
Model-Based Development flow with an
integration step of generated code.

Figure 4.1 shows the software development
processes and where SCADE Suite is used.

Figure 4.1: Software development processes with
SCADE Suite

Some companies start using SCADE Suite
to define control laws during the system
definition phase.

The simulation of models can be used very
early in the software development life
cycle to refine, improve, and validate the
textual high-level requirements that are
an input of the software design process
(see Section 4.2).

SCADE Suite models are extensively used
in the software design process to develop
major parts of the architecture and the
low-level requirements. Such models are
design models according to DO-331
definition (see Section 2.4). The
corresponding source code is then
generated from such model by using
SCADE Suite KCG.

Traceability within the software
development process (as defined in §5.5
[DO-178C]) requires bi-directional
traceability between:

• System requirements allocated to
software and HLR

• HLR and LLR (i.e., SCADE Suite model)
• LLR and source code

The traceability process between HLR and
SCADE Suite models can be easily
supported by SCADE LifeCycle Application
Lifecycle Management (ALM) Gateway as
mentioned in Figure 4.1 above and as
illustrated in Section 4.3.

The SCADE Suite KCG-generated code
must be integrated with respect to
integration constraints specified in
[KCG-TOR].

Traceability of requirements: SCADE LifeCycle Application LifeCycle Management Gateway

System
Requirements

Process

SW Design
Process

with SCADE Suite

SW Integration
Process

Integrated
Executable

Source
Code

Low-Level Requirements
& Architecture

High-Level
Requirements

SW Requirements
Process

SW Coding
Process

with SCADE Suite KCG

Methodology Handbook / SCADE Suite with DO-178C Objectives / 4 - 34

4.2 Software Requirements Process

In DO-178C terminology, the inputs to the
Software Requirements Process are the
System Requirements allocated to
Software (SRATS). The software
requirements process produces the HLR.
These HLR usually include functional,
performance, interface, and safety-related
requirements.

The logics requirements (logics HLR) are
usually in textual form. SCADE Suite
modeling capabilities can be efficiently
used to refine, improve, and validate the
logics HLR defined as input of the software
design process.

In this context, a prototype may be
developed in SCADE Suite for all functional
HLR with a focus on complex dynamic
algorithms. Such prototype can be
simulated using SCADE Test Rapid
Prototyper (see [TEST-UM] for more
information on prototyping and
simulation capabilities).

The Scade formal notation and interactive
simulation capabilities are a good support:

• To improve quality and productivity in
the development of textual software
requirements

• To speed up safety impact analysis if
requirements change

4.3 Software Design Process with
SCADE Suite

As explained in [DO-178C] §5.2, “the high-
level requirements are refined through
one or more iterations in the software
design process to develop the software
architecture and the low-level
requirements”.

Figure 4.2 illustrates the design flow with
SCADE Suite that is detailed in next
sections.

Figure 4.2: Software design process with SCADE
Suite

4.3.1 Architecture design

GLOBAL ARCHITECTURE DESIGN

The first step in the design process is to
define the global application architecture,
taking into account SCADE Suite and
manual software elements.

The application is decomposed
functionally into its main components. The
characteristics of these components serve
as a basis for allocating their refinement in

Requirements
Process

Global
Architecture

Design

Traditional
Design

SCADE
Architecture

Design

SCADE
Component A

LLR

SCADESCADE SCADE
Component B

LLR
Component I

LLR
Component X

LLR

Methodology Handbook / SCADE Suite with DO-178C Objectives / 4 - 35

terms of techniques (Scade, C, …) and
team. Among those characteristics, one
has to consider, for a software component:

• The type of processing (e.g., filtering,
decision logic, byte encoding)

• The interaction it has with hardware or
the operating system (e.g., direct
memory access, interrupt handling)

• Activation conditions (e.g., initialization)
and frequency (e.g., 100 Hz)

SCADE Suite is well-adapted to the
functional parts of the software, such as
logic, filtering, regulation. It may be less
appropriate for low-level software such as
hardware drivers, interrupt handlers, and
encoding/decoding routines.

SCADE SUITE ARCHITECTURE DESIGN

An architecture design model can be
developed in SCADE Suite as shown in the
next figure. It is also possible to use SCADE

Architect for designing the software
architecture and synchronizing this model
with SCADE Suite.

The purpose of the software architecture
design model is to:

• Identify high-level functions: typically
one develops a functional breakdown
down to a depth of two or three

• Define the interfaces of these functions:
names, data types (see I/O handling)

• Describe the data flows and control
flows between these functions

• Verify consistency of the data flows
between these functions using SCADE
Suite semantic checks

• Prepare the framework for the detailed
design process: define the top-level
functions while ensuring consistency of
their interfaces

Figure 4.3: Top-level view of a simple Flight Control System

This architecture design model is
extremely important because it lays the

foundations for the Logics LLR.

Methodology Handbook / SCADE Suite with DO-178C Objectives / 4 - 36

In particular, a good architecture aims at
ensuring:

• Stability and maintainability: The team
needs a stable framework during the
initial development as well as when
there are updates.

• Readability and verifiability: Readability
comes naturally through the clear and
unambiguous Scade language
semantics, and simple and intuitive
graphical symbology. Verifiability comes
naturally with a formal notation such as
the Scade language, but also requires to
minimize the complexity of the model.

• Efficiency: There is no magic recipe for
achieving a good model architecture
with SCADE products, it requires a mix
of experience, creativity, and rigor. Here
are a few suggestions:
• Be reasonable and realistic: nobody

can build a good architecture in one
shot. Do not develop the full model
from the first draft, but build two or
three architecture variants, then
analyze and compare them. You may
otherwise have to live with a bad
architecture for a long time.

• Review and discuss the architecture
with peers.

• Select the architecture that minimizes
connection complexity and is robust
to changes.

For example, the architecture, shown in
Figure 4.3, groups several logical controls in
one structured top-level operator. Such
design is more maintainable than if each
individual control would have its own
function with duplicated interfaces in the
model.

INPUT/OUTPUT HANDLING

Raw acquisition from physical devices and/
or from data buses are usually
implemented with specific drivers
externally to the SCADE Suite model and
with a manual coding approach. Inputs/
Outputs of a model are generally
normalized and grouped according to a
given functional meaning.

4.3.2 SCADE low-level requirements
development

Once the SCADE Suite architecture is
defined, the logics architecture models are
refined to design the low-level
requirements (LLR). The objective of this
activity is to produce a set of complete and
consistent SCADE Suite design models.

LOGICS LLR DEFINITION

The definition and granularity of an LLR in
SCADE Suite models are determined by
the user itself.

For instance, LLRs can be mapped to:

• user-defined operators (nodes or
functions declared by users to define
operators with/without memory,
imported operators, or operators
specialized by other operators)

• diagrams (graphical or textual
representation of dataflow and states)

• or equation sets (grouping design
elements graphically in diagrams to
allowing global commenting,
annotating or tracing)

For further information on LLR and
architecture definition within a SCADE
Suite model, please refer to [SC-SDVST].

Methodology Handbook / SCADE Suite with DO-178C Objectives / 4 - 37

4.3.2.1 Logics LLR development with SCADE
Suite

The Scade language includes both a
graphical and a textual representation. It
supports a unified modeling style that
enables the design of complex algorithms
and the design of complex control
software. Both styles can be combined
without restriction while the modularity of
the design is continuously supported.

This language efficiently supports good
practices for the development of high-
integrity software such as:

• Encapsulation (modularity)
• Strong typing
• Concurrency
• Re-usable components (interface

definition, genericity, library)

The following sections provide some
examples of SCADE Suite modeling
patterns that illustrate the above concepts.

FILTERING AND REGULATION

Filtering and regulation algorithms are
usually designed by control engineers.
Their design is often formalized in the
form of block diagrams and transfer
functions defined in terms of “z”
expressions.

The SCADE Suite graphical notation allows
representing block diagrams exactly in the
same way as control engineers, using the
same semantics. The Scade time operators
fit the z operator of control engineering.
For instance, the z-1 operator of control
engineering (meaning a unit delay) has
equivalent operators called “pre” and “fby”
in the Scade language. For example, if a
control engineer has written an equation
such as s=K1*u - K2* z-1*s, which means

s(k)=K1*u(k) - K2* s(k-1), this can be
expressed textually as s=K1*u-K2*pre(s) or
graphically, as shown in Figure 4.4 below.

Figure 4.4: A first order filter

It is possible to implement both Infinite
Impulse Response (IIR) and Finite Impulse
Response (FIR) filters. In a FIR filter, the
output depends on a finite number of past
input values; in an IIR filter such as the one
above, the output depends on an infinite
number of past input values because
there is a loop in the diagram.

DECISION LOGIC

In modern controllers, logic is often more
complex than filtering and regulation. The
controller has to handle:

• Identification of the situation
• Detection of abnormal conditions
• Decision making
• Management of redundant

computation chains

In SCADE Suite, a variety of techniques are
available for handling logic:

• Logical operators (such as and/or/xor)
and comparators.

• Selecting flows, based on conditions,
with the “if” and “case” constructs.

• Building complex functions from
simpler ones. SCADE Suite supports
encapsulation and modularity with the
concept of user-defined operators. For
instance, the UnitConvert is built from
basic counting, comparison, and logical

Methodology Handbook / SCADE Suite with DO-178C Objectives / 4 - 38

operators; it can in turn be used in more
complex functions to make them
simpler and more readable, as in Figure
4.5.

Figure 4.5: Complex display logic and simple
functions

• Conditional activation of operators
depending on Boolean conditions.

• State Machines as in Figure 4.6. For
instance, both modes of a Flight
Controller System can be easily
designed with a state machine
including two states: one state for the
Manual mode, one state for the
AutoPilot mode.

Figure 4.6: State machine in Flight mode
management

WHICH TECHNIQUE FOR DECISION LOGIC?

When starting with SCADE Suite, one may
ask which of the above-mentioned
techniques to select for describing logic.
Here are some hints for the selection of
the appropriate technique.

Selecting state machines or logical
expressions:

• Does the output depend on the past? If
it only depends on current inputs, this is
just combinatorial logic: simply use a
logical expression in the data flow. A
state machine that jumps to state Xi
when condition Ci is true independently
from current state, is degraded and
does not need to be a state machine.

• Does the state have strong qualitative
influence on behavior? This favors a
state machine.

Expressing concurrency:

• Simply design parallel data flows and
state machines: this is natural and
readable, and the code generator is in
charge of implementing this parallel
specification into sequential code.

Methodology Handbook / SCADE Suite with DO-178C Objectives / 4 - 39

4.3.3 Reusable components and library
management

4.3.3.1 SCADE library software life cycle

A SCADE Suite library6 object must be
developed as any other SCADE Suite
software component, taking into account
the following considerations:

• Library components are usually
identified during the design process of a
given application and can be considered
in most cases as implementation
choices, not necessarily described in the
upper-level requirements (HLR) of the
application.

• Good practices consist in defining
functional requirements (derived HLR)
for these library components as a
separate document and in developing
and verifying the components from its
derived HLR.

• When a library is shared between
several applications, a self-contained
development package may be
considered, including its own project
plans and standards, requirements,
design data, verification reports,
Software Quality Assurance reports and
Software Configuration Management
reports.

Section 4.3.3.2 below describes several
examples where the use of reusable
components is relevant for logics.

4.3.3.2 Re-usability with SCADE Suite library
components

Some general-purpose components (e.g.,
matrix product, integrator, rising edge
detector) should not be redone and
maintained multiple times, but should
rather be shared among projects in a
library. Some libraries may also be
managed for sharing components at the
application level (special type of filter).
Development and verification artifacts are
managed in shared libraries. Using library
operators has advantages:

• It saves time;
• It relies on validated components;
• It makes models more readable and

maintainable. For instance, a call to an
Integrator is much more readable than
the set of lower-level operators and
connections that implement an
Integrator;

• It enforces consistency throughout the
project;

• It factors the code.

SCADE LANGUAGE ADVANCED CONCEPTS FOR
RE-USABILITY

The Scade language supports several
concepts that facilitate the development
of re-usable components. It includes:

• Library
• Genericity/Polymorphism
• Parameterization by size

6. Libraries distributed with SCADE Suite product are provided as examples; they were not developed
following the process described in this section.

Methodology Handbook / SCADE Suite with DO-178C Objectives / 4 - 40

Figure 4.7: Concept of SCADE Suite library

Figure 4.7 shows a predefined SCADE Suite
library (libmath.etp as mathematical
library can be re-used for application
design). Users can create their own library
and reference them in the upper-level
application (e.g., libPlane library in
FlightControl project).

A library may include generic operators
(called polymorphic operators). Such
operators are defined independently from
the type of their arguments and can be
instantiated with various types. The figure
below illustrates a GenericToggle operator
instantiated once with integer and
another time with Boolean.

Figure 4.8: Example of generic operator instantiated with int and bool types

For algorithms on arrays (iterative
scheme), the size of input/output arrays for
an operator can be parameterized. The
size identifier is part of the formal interface
of this operator.

Figure 4.9 shows an operator
(MaxParametric) that computes the
maximum value of a set of integer values
implemented as array. It is parameterized
by size and can be instantiated with a
static value (literal 5 in this example).

Figure 4.9: Example of operator parameterized by size

4.3.4 Robustness management
Robustness of a safety critical software
cannot be addressed locally. It requires a
general robustness policy for the whole

Methodology Handbook / SCADE Suite with DO-178C Objectives / 4 - 41

system and should be addressed at each
step of the development and verification
processes.

The robustness policy should be defined in
the Software Design Standards, Software
Coding Standards, and Software
Architecture Design Document. As an
example, the way for handling arithmetic
exceptions should be defined at this global
level.

There should be explicit decisions about
robustness and failure handling in the
software requirements.

The HLR (including derived HLR for library
components) should specify responses to
abnormal input data and to any invalid
data that may be produced by
computation described in the HLR (e.g., for
X=Y/Z, the HLR should specify the
expected behavior to Z near zero, except if
there is evidence that Z is far from zero, or
more precisely that Y/Z cannot generate a
division by zero). This is required to achieve
accuracy and determinism of
requirements and to perform
requirements-based testing for robustness
tests.

COMMUNICATION WITH EXTERNAL ENVIRONMENT

A golden design rule is to never trust an
external input without appropriate
verification and to build consolidated data
from the appropriate combination of
available data.

By using SCADE Suite component
libraries, one can, for instance, insert:

• A voting function
• A low pass filter and/or limiter for a

numeric value
• A Confirmator for Boolean values, as

shown in Figure 4.10

Figure 4.10: Inserting Confirmator in Boolean input
flow

In a similar way, outputs to actuators have
to be value-limited and rate-limited, which
can be ensured by inserting Limiter
operators before the output, as shown in
Figure 4.11 below.

Figure 4.11: Inserting Limiter in output flow

Since the data flow is very explicit in
SCADE Suite models, it is both easy to
insert these components in the data flow
and to verify their presence when
reviewing a model.

DEFENSIVE PROGRAMMING

Defensive programming is a well-known
technique to make a design robust. It
means the following:

• Normal and abnormal input domains
are identified

• The SCADE Suite operator is designed/
coded as such that it reacts in a safe way
to abnormal inputs

• It is not critical for the environment of
this function to care about normal
conditions

For example, such a defensive
programming strategy for a square root
operator amounts to implementing a

Methodology Handbook / SCADE Suite with DO-178C Objectives / 4 - 42

specific behavior (according to the upper-
level requirements) when the input is
negative.

This approach is systematic and the direct
benefit is robustness. The potential
drawback is run-time cost, even in cases
when there is evidence that the normal
conditions hold, for example square root of
(x**2+y**2).

Another alternative to optimize run-time
efficiency is to consider a contractual
programming approach as presented
below.

CONTRACTUAL PROGRAMMING

This approach allows for alleviating the
design from the overhead of some
defensive constructs when given
preconditions are fulfilled on a given
operator. For instance, the precondition for
a non robust square root function is that
the input is non-negative. In this context,
this is the responsibility of the SCADE Suite
operator calling the square root function
to ensure that this precondition is fulfilled.

This approach is efficient for performance
purposes but the drawback is vulnerability:
extreme care must be taken when
verifying design with contractual
programming.

Figure 4.12: Example of robust architecture

On the left part, the robustness of the
design relies on a set of low-level robust
operators. Two benefits can be highlighted
in this context:

1 The corresponding software application
inherits robustness from its low-level
robust components.

2 The verification strategy of such robust
components is optimized because the
library operator is tested once according
to its robustness requirements.

On the right part, the approach is not
optimal because the low-level operations
are not systematically robust: a specific
and integral robustness analysis is
required to ensure the robustness of the

Tested once

Robustness by construction:

the LLR inherits robustness

of its robust components

Specific robustness verification

(review + LL robustness tests)

LLRs using
robust blocks

Robust Run Time Environment Partitionin ,
Exception handler, Monitor

LLRs not using
robust blocks

Robust Library
Non robust
Low-Level
Operations

Methodology Handbook / SCADE Suite with DO-178C Objectives / 4 - 43

whole software application and the
corresponding verification effort should be
higher.

See Section 5.5.5 for more information
about the verification strategy regarding
the robustness of a SCADE Suite
application.

4.4 Software Coding Process

The SCADE Suite KCG code generator
automatically generates the complete
code that implements the software design
defined in formal notation for both data
flows and state machines (see Figure 4.13).
It is not just a generation of skeletons; the
complete dynamic behavior is
implemented.

Figure 4.13: Software coding process with SCADE Suite

4.4.1 Code generation from SCADE Suite
models

The model completely defines the
expected behavior of the generated code.
The code generation options define the
implementation choices for the software.
However, these options never
complement nor alter the behavior of the
model.

PROPERTIES OF THE GENERATED CODE

Independently from the choice of the code
generation options, the generated code
has the following properties:

• The code is portable: it is [ISO-C] and
[ISO-Ada] compliant.

• The code structure reflects the model
architecture for data-flow parts when
there is no expansion and/or
optimization during code generation.
For control-flow parts, traceability
between state names and C/Ada code is
ensured.

• The code is readable and traceable to
the input model through the use of
corresponding names, specific
comments, and traceability file.

• Memory allocation is fully static (no
dynamic memory allocation).

• There is no recursive call.

Methodology Handbook / SCADE Suite with DO-178C Objectives / 4 - 44

• Only bounded loops are allowed, since
they use static values known at code
generation time.

• Execution time is bounded.
• Expressions are explicitly parenthesized.
• No dynamic address calculation is

performed (no pointer arithmetic).
• There are no implicit conversions.

• There is no expression with side-effects
(no i++, no a += b, no side-effect in
function calls).

• No functions are passed as arguments.

Traceability from the generated code to a
SCADE Suite data flow is illustrated in
Figure 4.14.

Figure 4.14: SCADE Suite data flow to generated C source code traceability

Traceability from the generated code to a
SCADE Suite state machine is illustrated in
Figure 4.15.

/* FlightControl::Confirmator/ */
void Confirmator_FlightControl(
inC_Confirmator_FlightControl *inC,
outC_Confirmator_FlightControl *outC)

{
/* _L7/ */
kcg_bool _L7;

_L7 = !(outC->_L4 & inC->Signal);
if (_L7) {
/* Counted=(pwlinear::ClockCounter#1)/ */
ClockCounter_pwlinear(
(kcg_bool) !inC->Signal,
&outC->Context_ClockCounter_1);

outC->Counted = outC->Context_ClockCounter_1.Count;
}
outC->ConfirmedSignal = outC->Counted >= inC->ConfirmThreshold;
outC->_L4 = outC->ConfirmedSignal;

}

#ifndef KCG_USER_DEFINED_INIT
void Confirmator_init_FlightControl(outC_Confirmator_FlightControl *outC)
{
outC->_L4 = kcg_false;
outC->ConfirmedSignal = kcg_true;
/* Counted=(pwlinear::ClockCounter#1)/ */
ClockCounter_init_pwlinear(&outC->Context_ClockCounter_1);
outC->Counted = kcg_lit_int32(0);

}
#endif /* KCG_USER_DEFINED_INIT */

#ifndef KCG_NO_EXTERN_CALL_TO_RESET
void Confirmator_reset_FlightControl(outC_Confirmator_FlightControl *outC)
{
outC->_L4 = kcg_false;
/* Counted=(pwlinear::ClockCounter#1)/ */
ClockCounter_reset_pwlinear(&outC->Context_ClockCounter_1);
outC->Counted = kcg_lit_int32(0);

}
#endif /* KCG_NO_EXTERN_CALL_TO_RESET */

1 1

pwlinear::ClockCounter

R

0

1

FBY 1

1 false

21

Signal

Conf irmThreshold

Conf irmedSignal
Counted

Methodology Handbook / SCADE Suite with DO-178C Objectives / 4 - 45

Figure 4.15: SCADE Suite state machine to generated C source code traceability

To further support automated analysis of
traceability between model constructs and
code, a traceability file (mapping.xml) is
generated by SCADE Suite KCG. A Python
API allowing to access this file content is
provided with SCADE Suite.

TUNING CODE TO TARGET AND PROJECT
CONSTRAINTS

Various code generation options can be
used to tune the generated code to a
particular target and project constraints.
Static analysis methods are available in
SCADE Suite using SCADE Suite Timing
and Stack Verifiers. Specified as a SCADE
Suite model, the applicative software can
be analyzed from the execution time point
of view allowing to tune modeling choices
and code generation options according to
users’ needs. Basically, there are two ways
to generate code from an operator:

• Non-expanded mode: the operator is
generated as a C/Ada function.

• Expanded mode: the whole code for the
operator is inlined where it is called.

This is illustrated in Figure 4.16.

Figure 4.16: Non-expanded and Expanded modes

Both of these code generation modes
(Non-expanded or Expanded) can be
composed at will, performing a call for
some operators and inlining for other
operators.

Note that the expansion directives (see
Non-expanded mode and Expanded
mode above) and some interface
directives (see definition below about
global_root_context option and

f ailsof t mode

Failsof t

modenominal

Nominal

<SMOn>

On

modeof f

Of f

<SMRollMode>

1
onOf f Pressed

1

onOf f Pressed

1

absRollRate > kFailSof tRoll

1

absRollRate <= kFailSof tRoll

/* RollMode::RollMode/ */
void RollMode_RollMode(inC_RollMode_RollMode *inC, outC_RollMode_RollMode *outC)
…
/* SMRollMode: */
switch (SMRollMode_state_act) {
…
/* SMRollMode:On:SMOn: */
switch (SMOn_state_sel_On_SMRollMode) {
case SSM_st_Failsoft_SMOn_On_SMRollMode :
if (inC->absRollRate <= kFailSoftRoll_RollMode) {
SMOn_state_act_On_SMRollMode = SSM_st_Nominal_SMOn_On_SMRollMode;

}
else {
SMOn_state_act_On_SMRollMode = SSM_st_Failsoft_SMOn_On_SMRollMode;

}
break;

case SSM_st_Nominal_SMOn_On_SMRollMode :
if (inC->absRollRate > kFailSoftRoll_RollMode) {
SMOn_state_act_On_SMRollMode = SSM_st_Failsoft_SMOn_On_SMRollMode;

}
else {
SMOn_state_act_On_SMRollMode = SSM_st_Nominal_SMOn_On_SMRollMode;

}
break;

…
/* SMRollMode:On:SMOn: */
switch (SMOn_state_act_On_SMRollMode) {
case SSM_st_Failsoft_SMOn_On_SMRollMode :
outC->SMOn_state_nxt_On_SMRollMode = SSM_st_Failsoft_SMOn_On_SMRollMode;
outC->mode = failsoft_RollMode;
break;

case SSM_st_Nominal_SMOn_On_SMRollMode :
outC->SMOn_state_nxt_On_SMRollMode = SSM_st_Nominal_SMOn_On_SMRollMode;
outC->mode = nominal_RollMode;
break;

… }
outC->SMRollMode_state_nxt = SSM_st_On_SMRollMode;
break;

case SSM_st_Off_SMRollMode :
outC->mode = off_RollMode;
outC->SMRollMode_state_nxt = SSM_st_Off_SMRollMode;
…

B

A

C

Operator description

Non-expanded mode

A{
…

B();
…

C();
…

}

Expanded mode

A{
…
/* code of A, B, C */
…

}

Methodology Handbook / SCADE Suite with DO-178C Objectives / 4 - 46

separate_io option/pragma) may have an
impact on the structure of the generated
code, on the integration of the generated
code, and even on the verification strategy.

These options and directives can be
considered as a design choice and should
be identified very early in the software
development life cycle, preferably during
architecture decomposition:

• The global_root_context SCADE Suite
KCG option is a code generation mode
where the inputs, outputs and context
variables of the root operators are
defined as C/Ada global variables and
not passed as arguments of the root C/
Ada functions. This change on the
signature of root C/Ada functions
impacts the integration of KCG
generated code.

• The separate_io SCADE Suite KCG
option and/or pragma applies to an
operator. When it is set, the code
generated for the cycle function is
different: outputs are no more in the
context but passed as separate
parameters. As for the global root
context, it impacts the integration of
generated code.

4.4.2 Code generation from multiple
components

CODE GENERATION FOR MULTIPLE LOGICS
COMPONENTS

The SCADE Suite KCG code generator is
specified and designed for verifying a
complete application and generating the
corresponding complete set of C/Ada files
in one global run, in order to ensure
consistency of the generated code.

This process is usually sufficient because it
ensures global consistency of the code
generated from a single SCADE Suite
component. Yet, it may not be appropriate
in the context of complex software
architecture. A complex SCADE Suite
application can result from several
components (interacting or not together)
where each component corresponds to a
single library model with a given root
node. It is the case for instance, when the
SCADE Suite application includes several
tasks and each task is designed with a
separate model.

As shown in Figure 4.17, there are two
alternatives for generating code:

1 Generating all code in one run, using
the “multi-root operators” SCADE Suite
KCG option (see [SUITE-UM] for further
information on options). This applies
whether root operators are defined in
the same model or not. When operators
do not belong to the same model, a new
integration model, which references the
input models as libraries, is created (see
integration model in Figure 4.17).

2 Generating code for each root node
separately and then integrating both C/
Ada generated codes into the
application.

Note that the coding process described in
the first alternative is highly
recommended unless there is a major
reason for not using it. It is the safest and
cleanest way to integrate the different root
nodes. It is also highly recommended as a
means for performing verification and
validation of the global behavior.

Even if the use of some KCG directives
such as manifest pragma and/or global
prefix option (see below) may support the
application of the second alternative, it

Methodology Handbook / SCADE Suite with DO-178C Objectives / 4 - 47

requires a strict coding and integration
process with additional verification
activities to check the consistency of the
interfaces and of the integration.

Figure 4.17: Code generation and multiple
components

• The manifest pragma is used to control
the type names generated by KCG. It
ensures better stability of the code
between two code generation sessions.

• The global prefix KCG option is used to
prevent name conflicts during

integration of generated code. It adds a
prefix (user-specified) in front of the
names of C global identifiers.

4.5 Software Integration Process

4.5.1 Integration aspects

The integration of a SCADE Application is
about:

• Interface with the external environment
(Inputs/Outputs)

• SCADE Suite module integration
• Integration of external data and code
• Scheduling and tasking

4.5.2 Interface with the external
environment

Interface to physical sensors and/or to data
buses is usually handled by drivers. If data
acquisition is done sequentially, while the
SCADE Suite functions are not active, then
a driver may pass its data directly to
SCADE Suite inputs. If it is complex data, it
may be passed by address for efficiency
reasons. If a driver is interrupt-driven, then
it is necessary to ensure that the inputs of
the SCADE Suite function remain stable,
while the function is computing the
current cycle. This can be ensured by
separating the internal buffer of the driver
from the input vector and by performing a
transfer (or address swap) before each
computation cycle starts. These drivers are
usually not developed in the Scade

C Code Application

C code A C code B C code C

SCADE

Component A
(root A)

SCADE

Component B
(root B)

SCADE

Component C
(root C)

Integration Code

SCADE Integration Model

KCG
-node A, B, C1

2 2 2
KCG

-node A
KCG

-node B
KCG

-node C

Integration Code

Methodology Handbook / SCADE Suite with DO-178C Objectives / 4 - 48

4.5.3 SCADE Suite module integration

A module refers here to the C/Ada code
generated by SCADE Suite KCG from a
SCADE Suite component. Depending on
the selected code generation process (see
Figure 4.17 in Section 4.4.2), the user has to
manage the integration of one or several
modules with the rest of the software
application.

The KCG directives for tuning the
generated code (such as options and
pragmas defined in Section 4.4.1) shall be
considered by the user as early as possible
while integrating the generated code.

Moreover, module integration depends on
the implementation of predefined Scade
types (see Section 3.2.1.6) which must be
mapped to C/Ada types. A default type
definition is given in the generated code
but it is possible to redefine these default
types by providing the implementation of
each basic type (the same definition as
this used for external code, see Section
4.5.3) in a user configuration file.

4.5.4 Integration of external code

SCADE Suite allows to reference external
code in models.

On the logics side, the Scade language
includes the concept of imported
constants, types, and functions (a tag
“imported” is set at the declaration level).
The declaration of these external data is
performed at model level in Scade
language whereas their definition is given
in host language (implementation in C
code). A typical example for SCADE Suite is
the usage of imported functions such as
trigonometric functions or byte encoding

and checksum functions. At integration
time, these functions have to be compiled
and linked to the SCADE Suite-generated
code.

For model simulation purposes, SCADE
Test automatically compiles and links
external code when the path names of the
source files are given in the project
settings.

4.5.5 Scheduling and tasking

Scheduling has to be addressed in the
preliminary design phase, but for the sake
of simplicity it is described below. First, the
section recalls the execution semantics of
SCADE Suite models, and then examines
how to implement scheduling of a model
in single or multirate mode, while in single
tasking or multitasking mode.

SCADE SUITE EXECUTION SEMANTICS

The SCADE Suite execution semantics is
based on a cycle-based execution model
as described in Section 3.2.2. This model
can be represented with Figure 4.18.

Figure 4.18: Execution semantics of SCADE Suite

The software application samples the
inputs from the environment and sets
them as inputs for the SCADE Suite code.
The main SCADE Suite function of the
generated code is called. When code
execution ends, the calculated outputs
can be used to act upon the environment.
The software application is ready to start
another cycle.

Methodology Handbook / SCADE Suite with DO-178C Objectives / 4 - 49

BARE SYSTEM IMPLEMENTATION

Typically, a cycle can be started in three
different ways:

• Polling: a new cycle is started
immediately after the end of the
previous one in an infinite loop.

• Event triggered: a new cycle is started
when a new start event occurs.

• Time triggered: a new cycle is started
regularly, based on a clock signal.

The SCADE generated code can be simply
included in an infinite loop, waiting or not
for an event or a clock signal to start a new
cycle:

SINGLE-TASK INTEGRATION OF SCADE SUITE
FUNCTION WITH AN RTOS

A SCADE Suite design can be easily
integrated in an RTOS task in the same
way that it is integrated in a general-
purpose code, as shown in Figure 4.19. The
infinite loop construct is replaced by a
task. This task is activated by the start
event of the design, which can be a
periodic alarm or a user activation.

Figure 4.19: SCADE Suite code integration

This architecture can be designed by hand
for any RTOS. SCADE Suite provides
automation of this code production
through the SCADE Code Integration
Toolbox allowing to develop user-specific
Adaptors for VxWorks® 653 from Wind
River®, for Integrity®-178B from Green
Hills® Software, for PikeOS from SYSGO,
for Deos™ from DDC-I, and for many
platforms at major suppliers and
integrators.

Note that concurrency is expressed
functionally in SCADE Suite models and
that SCADE Suite KCG takes into account
the model structure to generate
sequential code, taking into account this
functional concurrency and the data flow
dependencies. There is no need for the
user to spend time sequencing parallel
flows, neither during modeling nor during
implementation. There is no need to
develop multiple tasks with complex and
error-prone synchronization mechanisms.
Note that other code, such as hardware

begin_loop
waiting for an event (usually clock signal)
setting SCADE Suite inputs
calling SCADE Suite generated main functions
using SCADE Suite outputs
end_loop

Methodology Handbook / SCADE Suite with DO-178C Objectives / 4 - 50

drivers, may run in separate tasks,
provided they do not interfere with the
SCADE Suite generated code.

MULTIRATE, SINGLE-TASK APPLICATIONS

SCADE Suite can be used to design
multirate applications in a single OS task.
Some parts of the design can be executed
at a slower rate than the top-level loop.
Putting a slow part inside an activate7
operator can do this. Slowest rates are
derived from the fastest rate, which is
always the top-level rate. This ensures a
deterministic behavior.

The following application has two rates:
Sys1 (as fast as the top-level) and Sys2 (four
times slower), as shown in Figure 4.20.

Figure 4.20: Modeling a bi-rate system

The schedule of this application is as
shown in Figure 4.21 below:

Figure 4.21: Timing diagram of a bi-rate system

Sys2 is executed every four times only. It is
executed within the same main top-level
function as Sys1. This means that the

whole application, Sys1 + Sys2, is executed
at the fastest rate. This implies the use of a
processor fast enough to execute the
entire application at a fast rate. This could
be a costly issue.

The solution consists in splitting the slow
part into several smaller slow parts and
distributing their execution on several fast
rates. This is a simple way to design a
multirate application. Scheduling of this
application is fully deterministic and can
be statically defined.

The previous application example can be
redesigned as shown in Figure 4.22:

Figure 4.22: Modeling slow system over four cycles

The slow part, Sys2, is split into four
subsystems. These subsystems are
executed sequentially, one after the other,
in four cycles, as shown in Figure 4.23
below:

7. The Boolean Activate operator has an input condition (on top) used to trigger the execution of the
computation that is described inside the block, thus allowing the introduction of various rates of execution
for different parts of a model. The operator execution only occurs when a given activation condition is true.

Methodology Handbook / SCADE Suite with DO-178C Objectives / 4 - 51

Figure 4.23: Timing diagram of distributed
computations

The multirate aspect of a SCADE Suite
design is achieved using standard
constructs. This has no effect on the
external interface of the generated code.
This code can be integrated following the
infinite loop construct as described earlier.

Such design has advantages but also
constraints:

• Advantages:
• Static scheduling: fully deterministic,

no time slot exceeded or crushed, no
OS deadlock

• Data exchanges between subsystems
handled by SCADE Suite wrt. dataflow
execution order

• SCADE Suite simulation and proof are
valid for the generated code

• Same code interface as a monorate
application

• Constraints:
• Need to know the WCET (Worst Case

Execution Time) of each subsystem to
validate scheduling in all cases

• Split of slow subsystems can be
difficult with high rate ratio (e.g., 5ms
and 500ms)

• Constraint for design evolutions and
maintenance

MULTITASKING IMPLEMENTATION

The single tasking scheme described
above was used for fairly large industrial
systems. There are situations where
implementation of the generated code on
several tasks is useful, for instance, if there
is a large ratio between slow and fast
execution rates.

It is possible to build a global SCADE Suite
model, which formalizes the global
behavior of the application, while
implementing the code on different tasks.
While it is also possible to build and
implement separate independent models,
this global model allows representative
simulation and formal verification of the
complete system. The distribution over
several tasks requires specific analysis and
implementation (see [Camus] and [Caspi]
for details).

4.6 Teamwork

Working efficiently on a large project
requires both distribution of the work and
consistent integration of the software
pieces developed by each team. The
concept of SCADE project (etp file)
supported by SCADE Suite makes easier

collaborative work and re-usability. A
SCADE project has no semantic meaning:
it is a pure organizational entity.

Whatever the architecture, we usually
consider several categories of projects:

• A component project that provides a
complete functional view of a given
SCADE macro-component

Note
Sys1 execution time can be longer than with
the previous design. Thus, a slower, less
expensive, processor can be used.

Methodology Handbook / SCADE Suite with DO-178C Objectives / 4 - 52

• A set of library projects that contains
shared objects such as types, constants,
and functions intentionally located in a
dedicated project for re-usability
purposes or due to Intellectual
Properties (IP) constraints. Such library
projects are referenced in a component
project and/or top-level project.

• A top-level project for the integration of
the different SCADE macro-
components. This project is also called
“integration project” or “architecture
project”.

In a typical project organization:

• A software architect is in charge of
managing the top-level project, defining

in particular the macro-components,
their interfaces, and connections.

• A library manager is in charge of
defining the different library projects
and their content.

• Each macro-component or library is
developed by a specific engineering
team. The interface of such macro-
components or library components
defines a framework for these teams,
that maintain the consistency of the
design.

Figure 4.24 below describes a typical
teamwork organization for logics.

Figure 4.24: Typical teamwork organization

The best organization is to consider one
single engineer working on one separate
etp file. This etp file groups XSCADE files
(*.xscade) or SCADE files (*.scade)
corresponding to the definition of a
macro-component (see “Function A
project” in Figure 4.24) or a library (see
“Library project” in Figure 4.24).

If several engineers are required for the
development of a macro-component or a
library, the finest modularity is to consider
no more than one engineer for one
XSCADE (resp SCADE) file.

At each step of the software integration,
the team can verify in a mouse click that a
SCADE Suite component remains
consistent with its interface thanks to
semantic checks using SCADE Suite.

Function A Project

FuncA11

1

FuncA12

1
1

FuncA1

1
Input1

Input2

Input1

Output1

Output2

Output1

Output2

FuncA2

1

FBY
false 1

Architecture Project
Defines main functions and interfaces

Output1
FuncA

1Input1

FBY
false 1

FuncB

1

Library Project
(to develop before FuncA, FuncB ...)

Methodology Handbook / SCADE Suite with DO-178C Objectives / 4 - 53

Later, the integration of these parts into a
larger model can be achieved by linking
the “projects” to the larger one and the
integration consistency is also verified by
semantic checks using SCADE Suite.

All development data (etp, [X]SCADE files)
have to be kept under strict version and
configuration management control by
using any commercial Configuration
Management System (CMS).

Methodology Handbook / SCADE Suite with DO-178C Objectives / 5 - 55

5/ Software Verification Activities

5.1 Overview

According to DO-178C, validation is “the
process of determining that the
requirements are the correct
requirements and that they are
complete.” Verification is “the evaluation of
the results of a process to ensure
correctness and consistency with respect
to the inputs and standards provided to
that process.”

In other terms, the difference lies in the
nature of the errors that are found.
Validation always concerns the
requirements, even when a requirement
error is found by testing an
implementation that conforms to its (bad)
requirement(s); this differs from an
implementation error, which occurs when
the implementation does not conform to
the requirements.

The software verification process is an
assessment of the results of both the
software development process and the
software verification process. It is satisfied
through a combination of reviews,
analyses, and tests.

The software testing process is a part of
the verification process; it is aimed at
demonstrating that the software satisfies
its requirements both in normal operation
and in the presence of errors that could
lead to unacceptable failure conditions.

5.2 Verification of High-Level
Requirements

5.2.1 Verification objectives for HLR

Table 5.1 lists verification objectives for
software high-level requirements.

In a typical SCADE Suite development
process, the high-level requirements are
usually in textual form and include
functional, performance, interface and
safety-related requirements as detailed in
Section 4.2. These requirements must be
verified against the objectives of DO-178C
Table A-3.

When the requirements from which a
model is developed are an output of the
system process (for instance system
requirements allocated to software), the
guidance related to high-level
requirements should be applied to these

Table 5.1: DO-178C Table A-3

Objective Description Activity
Ref

1 High-level requirements comply with
system requirements

6.3.1

2 High-level requirements are accurate
and consistent

6.3.1

3 High-level requirements are compatible
with target computer

6.3.1

4 High-level requirements are verifiable 6.3.1

5 High-level requirements conform to
standards

6.3.1

6 High-level requirements are traceable to
system requirements

6.3.1

7 Algorithms are accurate 6.3.1

Methodology Handbook / SCADE Suite with DO-178C Objectives / 5 - 56

requirements according to DO-331,
MB.1.6.3- Note 1 and the verification
methods presented below still apply.

5.2.2 Verification methods for HLR

Due to the textual form of the
requirements, this compliance is mainly
addressed in a traditional way by peer
review.

5.2.3 Verification summary for HLR

Table 5.2 summarizes verification
objectives and methods for software high-
level requirements described textually.

5.3 Verification of SCADE Low-Level
Requirements and Architecture

5.3.1 Verification objectives for the LLR and
architecture

The SCADE Suite design models (see
Section 4.3) have to be verified against the
objectives of DO-331 Table MB.A-4 (see
Table 5.3).

Note that for LLR that are not developed in
SCADE Suite, verification activities have to
be performed in the traditional way
against the objectives of DO-178C Table A-
4.

Table 5.2: DO-178C Table A-3 Objectives Achievement

Objective Description Activity
Ref

Verification
Method

1 High-level requirements
comply with system
requirements

6.3.1 Peer review

2 High-level requirements
are accurate and
consistent

6.3.1 Peer review

3 High-level requirements
are compatible with
target computer

6.3.1 Peer review

4 High-level requirements
are verifiable

6.3.1 Peer review

5 High-level requirements
conform to standards

6.3.1 Peer review

6 High-level requirements
are traceable to system
requirements

6.3.1 Peer review

7 Algorithms are accurate 6.3.1 Peer review

Table 5.3: DO-331 Table MB.A-4

Objective Description Activity Ref

1 Low-level requirements comply with high-
level requirements

MB.6.3.2
MB.6.7
MB.6.8.1
(see Item 1)

2 Low-level requirements are accurate and
consistent

MB.6.3.2
MB.6.8.1
(see Item 1)

3 Low-level requirements are compatible with
target computer

MB.6.3.2

4 Low-level requirements are verifiable MB.6.3.2
MB.6.8.1
(see Item 1)

5 Low-level requirements conform to standards MB.6.3.2

6 Low-level requirements are traceable to high-
level requirements

MB.6.3.2

7 Algorithms are accurate MB.6.3.2
MB.6.8.1
(see Item 1)

8 Software architecture is compatible with
high-level requirements

MB.6.3.3
MB.6.8.1
(see Item 1)

9 Software architecture is consistent MB.6.3.3
MB.6.8.1
(see Item 1)

Methodology Handbook / SCADE Suite with DO-178C Objectives / 5 - 57

Item 1: As described in section MB. 6.8.1 of this
supplement [DO-331], simulation may be used as a
means of compliance for objectives 1, 2, 4, 7, 9, or 11 of
this table. If simulation is used as this means, objectives
MB.14, MB.15, and MB.16 are required.

5.3.2 Compliance with high-level
requirements

Compliance with HLR is verified through a
combination of techniques:

• Model simulation
• Peer review
• Formal verification

5.3.2.1 Model simulation

Model simulation allows exercising the
behavior of a model. As stated in [DO-331],
MB.6.8.1, its main purpose is to provide
repeatable evidence of compliance of the
model to the requirements from which
the model was developed.

Moreover, model simulation is an efficient
way to detect functional issues very early
in the software design and/or upper-level
requirements.

Simulation of SCADE Suite models
requires the following activities:

• SCADE verification cases and
procedures are developed from the
requirements from which the SCADE
model was developed (HLR)

• SCADE verification cases and
procedures shall address the same
considerations as those for normal
range and robustness test cases and
procedures and possible error sources
(see [DO-178C] 6.4.2)

• HLR are covered by SCADE verification
cases and procedures.

• SCADE verification cases and
procedures are reviewed to confirm that
they are correct (see objectives MB.14
and MB.15).

• SCADE models are exercised by HLR-
based verification cases and procedures
in the host environment

• SCADE simulation results are reviewed
to confirm that they are complete and
correct and all deficiencies are explained
(see objective MB.16)

Note: “SCADE verification cases and
procedures” is a generic term to designate
both

• The simulation cases and procedures
used for SCADE model simulation on
host during design verification ([DO-331]
Table MB.A-4)

• The test cases and procedures used for
Executable Object Code (EOC) Testing
on target ([DO-331] Table MB.A-6)

10 Software architecture is compatible with
target computer

MB.6.3.3

11 Software architecture is verifiable MB.6.3.3
MB.6.8.1
(see Item 1)

12 Software architecture conforms to standards MB.6.3.3

13 Software partitioning integrity is confirmed MB.6.3.3

MB
14

Simulation cases are correct
(see Item 1)

MB.6.8.1
MB.6.8.3.2

MB
15

Simulation procedures are correct
(see Item 1)

MB.6.8.1
MB.6.8.3.2

MB
16

Simulation results are correct and
discrepancies explained (see Item 1)

MB.6.8.1
MB.6.8.3.2

Table 5.3: DO-331 Table MB.A-4 (Continued)

Objective Description Activity Ref

Methodology Handbook / SCADE Suite with DO-178C Objectives / 5 - 58

Model simulation, when it is supported by
a qualified tool, may be used to formally
satisfy some objectives of Table A-4 as it is
shown below during the verification of
logics architecture and LLR. On the other
hand, some peer reviews and/or analysis
are still required to fully address the design
verification objectives as illustrated below.

VERIFICATION OF LOGICS ARCHITECTURE AND
LLR

SCADE Test Environment fully supports
the dynamic verification of SCADE Suite
models with regard to the logics HLR.

1 SCADE Test Environment for Host
provides an integrated environment
that allows validation and verification
engineers to both automate the
creation and management of simulation
cases (see Figure 5.1) and then to run on
host the verification cases created from
the HLR (see Figure 5.2).

Figure 5.1: Verification cases creation and management in Test Environment for Host

With SCADE Test Environment for Host,
the generation of test conformance
reports (containing simulation results) is
automated, enabling significant time and
cost savings over manual verification.
SCADE Test Environment for Host is
qualified as a verification tool for DO-178C/

DO-330 at TQL-5. This qualification
evidence allows applicants to claim credit
from SCADE Test Environment for Host
simulation for the verification of the
compliance of a SCADE Suite model with
its HLR.

Methodology Handbook / SCADE Suite with DO-178C Objectives / 5 - 59

Figure 5.2: Simulation results from running verification cases on host

2 SCADE Test Model Coverage8 is a
coverage analysis tool that executes and
reports coverage from HLR-based
SCADE Suite verification cases and
procedures at model level. Model
coverage analysis (see Figure 5.3) is
required during design verification with
the objective to assess completeness of

the verification cases. SCADE Test Model
Coverage is qualified as a verification
tool for DO-178C/DO-330 at TQL-4. This
qualification evidence allows applicants
to claim credit from model coverage
measurement. For further information
about Test Model Coverage concepts
and usage, refer to Chapter 6/

8. Support for Ada code available from SCADE 2021 R1 onward.

Methodology Handbook / SCADE Suite with DO-178C Objectives / 5 - 60

Figure 5.3: Model coverage analysis with SCADE Test Model Coverage

5.3.2.2 Peer reviews with SCADE LifeCycle
Reporter

Additional peer reviews focused on HLR/
LLR traceability analysis and design
robustness analysis only can be performed
based on the report generated by SCADE
LifeCycle Reporter. SCADE LifeCycle
Reporter is qualified as verification tool for
DO-178C/DO-330 at TQL-5. This
qualification ensures completeness and
consistency of the generated report
according to the input model. The

notation used for SCADE Suite models has
several advantages compared to a textual
notation:

• Its formal definition: the description is
not subject to interpretation

• Its graphical representation is simple
and intuitive

5.3.2.3 Formal verification with SCADE Suite
Design Verifier

Formal methods are complementary to
simulation and testing techniques for the
verification of software. The DO-333
technical supplement (see §2.1.6) is

Methodology Handbook / SCADE Suite with DO-178C Objectives / 5 - 61

applicable in conjunction with DO-178C
when formal methods used as part of the
software life cycle [DO-333].

SCADE Suite Design Verifier9 provides an
original and powerful verification
technique based on formal verification
technologies.

Formal verification of software consists of a
set of activities using a mathematical
framework to reason about software
behaviors and properties in a rigorous way.
The recipe for formal verification of safety
properties is:

1 Define a formal model of the software;
namely a mathematical model
representing the states of a software
and its behaviors. When modeling LLR
in the Scade language, the model is
already formal, so there is no additional
formalization effort required.

2 Define for the formal model a set of
formal properties to verify. These
properties correspond to high-level
requirements or system requirements.

3 Perform state space exploration to
mathematically analyze the validity of
the safety properties.

Assume one has a landing gear control
system, which may trigger a landing gear
retraction command. Assume one wants
to verify the following safety property:

In a SCADE Suite operator one would
express the safety property shown in
Figure 5.4 below, reflecting the property
above. This operator is called an observer.

Figure 5.4: Observer operator containing landing
gear safety property

Then, one would connect the observer
operator to the controller in a verification
context operator, as in Figure 5.5 below.

Figure 5.5: Connecting the observer operator to the
landing gear controller

In specific contexts, Design Verifier may
support the detection of specification
errors at the early phase of the software
flow, minimizing the risk of discovering
these errors during the final integration
and validation phases. Design Verifier is
not a qualified tool. It can only be used as
additional verification means in particular
for logical-oriented applications, where
relevant.

9. SCADE Suite Design Verifier is powered by Prover® PSL from Prover Technology. Prover, Prover
Technology, Prover Plug-in, and the Prover logo are trademarks or registered trademarks of Prover
Technology AB in European Union, the United States, China, and in other countries.

“for all possible behaviors of this controller, it will never send a landing gear retraction command while the aircraft is in landing mode or on the ground”

Methodology Handbook / SCADE Suite with DO-178C Objectives / 5 - 62

5.3.3 Model accuracy and consistency

Syntactic and semantic checks using
SCADE Suite Checker perform an in-depth
analysis of logics consistency, including:

• Detection of missing definitions
• Warnings on unused definitions
• Detection of dependency to an

uninitialized flow
• Type consistency check of operator

instance actual parameters with
operator interface

• Detection of causality issues i.e.,
immediate dependency of a flow
definition with the flow itself

• Clock consistency check to ensure that
flows are produced and consumed at
the same rate

5.3.4 Compatibility with target computer

The objective is to ensure that no conflict
exists between the low-level requirements,
the architecture and the hardware/
software features of the target platform.

In the context of SCADE models, the
following aspects shall be considered:

• Models complexity
• Execution time and memory size
• Compatibility of generated code with

target platform

MODEL COMPLEXITY ANALYSIS

The main objective is to monitor the
complexity of SCADE models to avoid
potential issues during the software
development and target execution.

It is strongly recommended to define the
rules related to the management of
SCADE models complexity in the Software
Model Standards document (see DO-331,
MB.11.23).

Regarding SCADE Suite models, typical
complexity metrics such as “the maximum
number of diagrams for an operator”, “the
maximum number of user-operators
within a diagram”, or “the maximum
number of nested levels of conditional
operators” are defined in the SCADE Suite
Development Standards [SC-SDVST].

Such rules must be checked either
automatically or manually. In the context
of automatic verification, the user is able to
develop its own design rules by using
SCADE Suite Rules Checker10 scripting
capabilities. This tool is not qualified:
qualification must be done by the user for
ones’ specific rules. For further information
on scripting capabilities, refer to SCADE
Suite User Manual [SUITE-UM].

EXECUTION TIME AND MEMORY SIZE ANALYSIS IN
SCADE SUITE MODELS

The main objective of this analysis is to
anticipate potential timing problems and
stack usage problems during the software
design phase.

Timing problem: The ability of an
application to complete its task on time
using a given CPU is usually addressed
during target integration testing.
Schedulability analysis must be performed
to demonstrate the properties of the
integrated system with respect to timing
requirements.

10.Available from SCADE 2019 R1 onwards.

Methodology Handbook / SCADE Suite with DO-178C Objectives / 5 - 63

Hence it is necessary to determine an
upper bound for execution time, which
results from a process called Worst-Case
Execution Time (WCET) analysis.

Measurement of WCET raises several
challenges that impose major costs and
risks on the integration testing phase of
any software development project:

• Measurement is only possible when all
elements of the system are available:
application software, system software,
target system, and a complete set of
test cases. It is often too late when a
problem is found in these project
phases. Late changes of software and/or
target result in very high costs and risky
delays.

• Measurement is not precise or implies
code instrumentation which may alter
test results in non-predictable ways.

• Tracing of execution time phenomena
back to code or even to the model is
very tedious, if even possible, and
imposes serious challenges on the root
cause analysis of such effects.

• Measurements cannot be demonstrated
to be safe (i.e., is it really the worst case
we encountered?).

Stack usage problem: Stack overflow is
also a serious safety issue. The absence of
stack overflow is a property that must be
demonstrated during target integration
verification. However, the nature and
complexity of the problem makes
prediction and avoidance very hard to
achieve and even harder to demonstrate.
A common and traditional method for
verifying stack usage is to write a short
program which fills the stack with a given
bit-pattern, and then execute the
application and count how many stack
registers still have the bit-pattern.

But how can you be sure that you really
have the most pessimistic execution order
and data usage in your application?

SCADE Suite includes two different
modules that support timing and stack
analysis of models:

Timing and Stack Optimizer (TSO)
computes the WCET and stack size
estimation for a generic platform. TSO is
usually used to compare different versions
of a model to determine the most efficient
design. SCADE Suite users can use it to
monitor the performances of their design
with respect to WCET and stack usage.
This tool is relevant, in particular, for early
verification of the compatibility between
the model and the target platform.

Timing and Stack Verifiers (TSV) compute
precise WCET and stack size for a model
on a specific hardware target. Such
analysis runs with respect to specific target
processors and C compilers, and requires
fine-grained customization to comply with
the hardware characteristics. Even if TSV is
still relevant during early verification of the
target compatibility analysis, its operating
mode is quite complex (due to the
number of parameters to be set) and it is
usually relevant only when precise WCET
and stack size measurements are required
during final integration testing on target
platform.

Timing and Stack Optimizer and Timing
and Stack Verifiers are fully integrated
into the SCADE Suite environment. The
analysis results are directly shown and
hyperlinks are available for direct reference
to the model constructs matching each
WCET and/or stack size results.

Figure 5.6 illustrates global visualization
results.

Methodology Handbook / SCADE Suite with DO-178C Objectives / 5 - 64

Figure 5.6: Timing and Stack analysis global
visualization

Figure 5.7 illustrates global and detailed
results for Timing analysis.

Figure 5.7: Timing Verifier analysis reports

For further information on TSO/TSV, refer
to SCADE Suite User Manual [SUITE-UM].

COMPATIBILITY OF GENERATED CODE WITH
TARGET PLATFORM

SCADE Suite includes a Compiler
Verification Kit (CVK) with the objective of
verifying that the type of code generated

by SCADE Suite KCG is correctly compiled/
executed with a given cross-compiler on
target platform.

CVK supports early verification of the
correctness and consistency of the
development environment with the
development standards and the target
platform.

���� ���	
��

� �
� �������

��� ���� �����

Methodology Handbook / SCADE Suite with DO-178C Objectives / 5 - 65

CVK relies on a sample-based approach
such as described in DO-248C DP#12. This
approach is relevant due to the
characteristics of generated code: regular
patterns that strictly conform to restricted
coding standards defined in [KCG-TOR]
documentation.

For further information related to CVK
principles and CVK development strategy,
refer to Appendix D/.

5.3.5 Verifiability

Since SCADE Suite has a formal notation,
the corresponding models are formally
verifiable.

Such verifiability is confirmed by SCADE
Suite syntactic and semantic checks (see
Section 5.3.3) when no errors or warnings
(that cannot be justified) are raised by the
respective tools.

SCADE Suite model complexity must also
be monitored to ensure design verifiability
according to the procedure described in
Section 5.3.4.

5.3.6 Conformity to standards

Two levels of rules must be considered for
SCADE models:

• SCADE Suite built-in rules: they are
predefined rules directly from the
definition of SCADE Suite formal
notation. Regarding the logics, the
Scade Language Reference Manual
[SCS-KCG-LRM] defines what a correct
Scade model is, and what a correct
Scade model defines. The former is
called “static semantics” as formally

defined in [SCS-KCG-LRM], the later is
also defined in the same document in a
semi-formal way (text and
mathematics). KCG front-end first
implements all the static checks defined
in [SCS-KCG-LRM] and stops whenever
the defined static discipline is not
satisfied; then it generates a code that
implements the dynamic semantics.
Using SCADE Suite Checker, it is
possible to invoke KCG front-end to
check the static semantics only.

• User design rules related to SCADE
models: they are additional rules
defined by the user in its Software
Model Standards (DO-331, MB.11.23) for
readability, verifiability, and
maintainability purposes. These rules
must be checked either automatically or
manually. In the context of automatic
verification, users are able to develop
their own design rules by using the
Python capabilities (see 5.3.3 for details
about SCADE products scripting
capabilities).

5.3.7 Traceability from SCADE Suite LLR to
HLR

HLR/LLR bi-directional traceability is
required as stated in [DO-178C], §5.5. For
the definition and granularity of Logics
LLR within a model, please refer to Section
4.3.2.

Trace data must confirm that:

•All HLR are covered by SCADE LLR11;

•All SCADE LLR are correctly traced to HLR;

•All SCADE LLR that are not traced to HLR
are explicitly identified as derived SCADE
LLR by design choice.

11. SCADE LLR is used as a generic term to designate Logics LLR .

Methodology Handbook / SCADE Suite with DO-178C Objectives / 5 - 66

Derived requirements must be provided to
safety process according to [DO-178C] §2.3.
Other untraced SCADE LLR must be
removed from the design.

This traceability analysis is efficiently
supported by SCADE LifeCycle Application
Lifecycle Management Gateway that

allows connection to ALM tools for the
creation of HLR/LLR traceability links from
the model-based design environment (see
Figure 5.8).

Figure 5.8: Creating LLR/HLR traceability links within ALM Gateway

5.3.8 Algorithms accuracy

The accuracy of algorithms is verified
through a combination of model
simulation and peer review.

The review of SCADE LLR algorithms
focuses on the analysis of numerical
algorithms to verify their robustness to

precision issues and detect potential
numerical issues (division by zero,
overflow, etc.).

Simulation of SCADE Suite models with
SCADE Test Environment for Host is a
strong support to the verification of
numerical algorithms. This technique may
reveal failure of an algorithm such as

Methodology Handbook / SCADE Suite with DO-178C Objectives / 5 - 67

convergence and/or precision issues. For
further information on SCADE Test
Environment for Host, refer to Section 5.3.2.

5.3.9 Partitioning

SCADE Suite introduces no specific risks,
but provides no partitioning mechanism.
Partitioning is beyond the scope of the
SCADE model-based design
environments. It has to be ensured by low-
layer hardware and software mechanisms
such as memory partitioning and interrupt
service routines. This is provided by
operating systems such as ARINC 653
compliant operating systems.

5.3.10 Verification of simulation cases,
procedures and results (MB. specific
objectives)

The objectives MB.A-4#MB14, #MB15 and
#MB16 are required when simulation is
used as a means of compliance for
objectives 1, 2, 4, 7, 8, 9, or 11 of Table MB.A-
4 (see [DO-331], Table MB.A-4 Item 1). This
is the case for the logics part of the
application.

The verification of SCADE Suite verification
cases, procedures, and results relies on
peer review (see Section 5.3.2 for definition
of verification cases and procedures).

The review of verification cases must
confirm that:

• verification cases are traceable to HLR
• verification cases satisfy criteria of

normal and robustness testing
• All HLR are covered by verification cases

The review of verification procedures shall
confirm that verification cases, including
expected results, are correctly developed
into verification procedures

The review of simulation results must
confirm that:

• Simulation results are expected results
• Discrepancies between actual and

expected results generate problem
reports

Simulation results generated by SCADE
Test Environment for Host and reported in
test conformance reports include a pass/
fail status for each verification case. Note
that the qualification of SCADE Test
Environment for Host (DO-330 TQL-5)
ensures that simulation results are
correctly evaluated and correctly reported.

5.3.11 Verification summary for LLR and
architecture

Table 5.4 summarizes verification
objectives and methods for the software
low-level requirements and architecture.

Table 5.4: DO-331 Table MB.A-4 Objectives Achievement

Objective Description Ref Activity
Ref

Verification Method

1 Low-level requirements comply
with high-level requirements

MB.6.3.2.a MB.6.3.2
MB.6.7
MB.6.8.1
(see Item 1)

Peer review with SCADE LifeCycle Reporter
Model Simulation with SCADE Test Environment for Host
Model Coverage with SCADE Test Model Coverage

2 Low-level requirements are
accurate and consistent

MB.6.3.2.b MB.6.3.2
MB.6.8.1
(see Item 1)

Automated by SCADE Suite Checker (syntactic and semantic)

Methodology Handbook / SCADE Suite with DO-178C Objectives / 5 - 68

Item 1: As described in section MB. 6.8.1 of this supplement [DO-331], simulation may be used as a means of compliance for
objectives 1, 2, 4, 7, 9, or 11 of this table. If simulation is used as this means, objectives MB.14, MB.15, and MB.16 are required.

3 Low-level requirements are
compatible with target
computer

MB.6.3.2.c MB.6.3.2 Analysis of SCADE Suite models complexity
Analysis of SCADE models execution time and memory size with SCADE
Suite TSO/TSV
CVK execution on target

4 Low-level requirements are
verifiable

MB.6.3.2.d MB.6.3.2
MB.6.8.1
(see Item 1)

Analysis of SCADE Suite models complexity
Automated by SCADE Suite Checker (syntactic and semantic)

5 Low-level requirements conform
to standards

MB.6.3.2.e MB.6.3.2 SCADE built-in rules: Automated by SCADE Suite Checker
User design rules: peer review or automated by SCADE Suite Checker (if any
design rules existing)

6 Low-level requirements are
traceable to high-level
requirements

MB.6.3.2.f MB.6.3.2 Traceability analysis with SCADE LifeCycle ALM Gateway

7 Algorithms are accurate MB.6.3.2.g MB.6.3.2
MB.6.8.1
(see Item 1)

Peer review
Model Simulation of numerical algorithms with SCADE Test Environment for
Host

8 Software architecture is
compatible with high-level
requirements

MB.6.3.3.a MB.6.3.3
MB.6.8.1
(see Item 1)

Peer review with SCADE LifeCycle Reporter

9 Software architecture is
consistent

MB.6.3.3.b MB.6.3.3
MB.6.8.1
(see Item 1)

Automated by SCADE Suite Checker (syntactic and semantic)

10 Software architecture is
compatible with target
computer

MB.6.3.3.c MB.6.3.3 Analysis of SCADE Suite architecture models complexity
CVK execution on target

11 Software architecture is
verifiable

MB.6.3.3.d MB.6.3.3
MB.6.8.1
(see Item 1)

Analysis of SCADE Suite architecture models complexity
Automated by SCADE Suite Checker (syntactic and semantic)

12 Software architecture conforms
to standards

MB.6.3.3.e MB.6.3.3 SCADE built-in rules: Automated by SCADE Suite Checker (syntactic and
semantic)
User design rules: peer review or automated by SCADE Suite Checker (if any
design rules existing)

13 Software partitioning integrity is
confirmed

MB.6.3.3.f MB.6.3.3 SCADE Suite introduces no specific risk, but provides no partitioning
mechanism; traditional method has to be used

MB
14

Simulation cases are correct
(see Item 1)

MB.6.8.3.2.a MB.6.8.1
MB.6.8.3.2

Peer review of SCADE Suite verification cases

MB
15

Simulation procedures are
correct
(see Item 1)

MB.6.8.3.2.b MB.6.8.1
MB.6.8.3.2

Peer review of SCADE Suite verification procedures

MB
16

Simulation results are correct
and discrepancies explained (see
Item 1)

MB.6.8.3.2.c MB.6.8.1
MB.6.8.3.2

Analysis of test conformance report generated by SCADE Test Environment
for Host

Table 5.4: DO-331 Table MB.A-4 Objectives Achievement (Continued)

Objective Description Ref Activity
Ref

Verification Method

Methodology Handbook / SCADE Suite with DO-178C Objectives / 5 - 69

5.4 Verification of Coding Outputs and
Integration Process

5.4.1 Verification objectives for coding
output and integration process

Table 5.5 lists verification objectives for
outputs of the coding and integration
process.

5.4.2 Impact of code generator
qualification

The KCG Code Generator is qualified as a
Criteria 1 tool because it was developed to
fulfill the DO-330 TQL-1 objectives (see
Appendix C/ for details about qualification).

This has the following consequences:

SOURCE CODE COMPLIES WITH LOW-LEVEL
REQUIREMENTS

The qualification of SCADE Suite KCG
ensures that the source code generated
from any correct set of SCADE Suite
models complies with SCADE Suite LLR
contained in these models.

Note that if the models are not correct, no
code is generated.

SOURCE CODE COMPLIES WITH SOFTWARE
ARCHITECTURE

The qualification of SCADE Suite KCG
ensures that the architecture of the source
code generated from any correct set of
SCADE Suite models complies with the
software architecture.

The architecture of SCADE Suite KCG
Generated Code is determined by SCADE
Suite users. The definition of the
architecture includes the model structure,
expansion directives, and interface
directives as explained in Section 4.4.1,
“Tuning Code to Target and Project
Constraints”.

SOURCE CODE IS VERIFIABLE

The qualification of SCADE Suite KCG
ensures that the code structures
generated from any correct set of models
have a clear meaning, reflecting elements
of the models.

Table 5.5: DO-331 Table MB.A-5

Objective Description Activity Ref

1 Source code complies with low-level
requirements

MB.6.3.4

2 Source code complies with software
architecture

MB.6.3.4

3 Source code is verifiable MB.6.3.4

4 Source code conforms to standards MB.6.3.4

5 Source code is traceable to low-level
requirements

MB.6.3.4

6 Source code is accurate and
consistent

MB.6.3.4

7 Output of software integration
process is complete and correct

6.3.5

8 Parameter Data Item File is correct
and complete

6.6

9 Verification of Parameter Data Item
File is achieved

6.6

Methodology Handbook / SCADE Suite with DO-178C Objectives / 5 - 70

SOURCE CODE CONFORMS TO STANDARDS

The qualification of SCADE Suite KCG
ensures that the source code generated
from any correct set of models complies
with its coding standards. Coding rules for
SCADE Suite KCG are defined in SCADE
Suite KCG Tool Operational Requirements
(TOR) document [KCG-TOR].

SOURCE CODE IS TRACEABLE TO LOW-LEVEL
REQUIREMENTS

The qualification of SCADE Suite KCG
ensures that the source code generated
from any correct set of models is traceable
to Logics LLR contained in these models.

SOURCE CODE IS ACCURATE AND CONSISTENT

The qualification of SCADE Suite KCG
ensures that the source code generated
from any correct set of models reflects
these models accurately and consistently.
This evidence is based on the
requirements (see TOR document) of KCG
that include:

• The verification that the model complies
with the syntactic/semantic rules of the
input language;

• A code generation scheme ensuring
that the generated code reflects the
model.

Additional user integration activities are
needed to evaluate if the properties of the
code are met in the target execution
environment such as stack usage, WCET

analysis, mathematical analysis for
overflow prevention. Such analysis can be
confirmed by actual measurements for
timing, memory usage, etc.

The objectives listed above are met thanks
to KCG qualification, provided that the
code was successfully generated by KCG.
This is confirmed by analysis of code
generation logs.

OUTPUT OF THE SOFTWARE INTEGRATION
PROCESS IS COMPLETE AND CORRECT

The verification of Executable Object Code
(EOC) integration is a review of compiling,
linking, and loading data to confirm that
the EOC was built in a complete and
correct way according to the software
build and load procedure. This objective is
independent from the fact that the EOC is
obtained from generated code or not.

5.4.3 Verification of parameter data items

According to DO-178C, §2.5.1, a Parameter
Data Item (PDI) is a set of data that
influences the behavior of software
without modifying the Executable Object
Code (EOC) and that is managed as a
separate configuration item.

The verification of PDI is addressed in DO-
178C, §6.6 and is out of the scope of this
document related to Model-Based-
Development with SCADE.

Methodology Handbook / SCADE Suite with DO-178C Objectives / 5 - 71

5.4.4 Verification summary for coding
output and integration process

Table 5.6 summarizes verification
objectives and methods for coding
outputs and integration process.

5.5 Testing of Outputs from Integration
Process

5.5.1 Testing objectives for outputs from
integration process

Table 5.7 lists the verification objectives for
testing outputs of the integration process.

Item1: As described in section MB.6.8.2.a of the [DO-331]
Supplement, the MB.6.8.2.a is only required when
simulation is used as a means of compliance for
objectives 1 or 2 of this table.

5.5.2 SCADE Combined Testing Process
overview

The Combined Testing Process (CTP) is a
SCADE Suite model-based efficient and
optimized testing process to fully satisfy
the DO-178C Table MB.A-6 objectives while
optimizing testing efforts.

Table 5.6: DO-331 Table MB.A-5 Objectives
Achievement

Objective
Description

Activity
Ref

Verification
Method

1 Source code complies
with low-level
requirements

MB.6.3.4 Ensured by SCADE
Suite KCG
qualification1

1. Users must verify the absence of any errors in the log
file generated by SCADE Suite KCG.

2 Source code complies
with software
architecture

MB.6.3.4 Ensured by SCADE
Suite KCG
qualification1

3 Source code is verifiable MB.6.3.4 Ensured by SCADE
Suite KCG
qualification1

4 Source code conforms
to standards

MB.6.3.4 Ensured by SCADE
Suite KCG
qualification1

5 Source code is traceable
to low-level
requirements

MB.6.3.4 Ensured by SCADE
Suite KCG
qualification1

6 Source code is accurate
and consistent

MB.6.3.4 Ensured by SCADE
Suite KCG
qualification1
Additional user
integration verification
activities.

7 Output of software
integration process is
complete and correct

6.3.5 Analysis of compiling/
linking/loading data

8 Parameter Data Item
File is correct and
complete

6.6 Not SCADE-specific;
traditional method has
to be used

9 Verification of
Parameter Data Item
File is achieved

6.6 Not SCADE-specific;
traditional method has
to be used

Table 5.7: DO-331 Table MB.A-6

Objective Description Activity Ref

1 Executable Object Code complies
with high-level requirements

6.4.2
6.4.2.1
6.4.3
6.5
MB.6.8.2.a (see Item 1)

2 Executable Object Code is robust
with high-level requirements

6.4.2
6.4.2.1
6.4.3
6.5
MB.6.8.2.a (see Item 1)

3 Executable Object Code complies
with low-level requirements

6.4.2
6.4.2.1
6.4.3
6.5

4 Executable Object Code is robust
with low-level requirements

6.4.2
6.4.2.2
6.4.3
6.5

5 Executable Object Code is
compatible with target computer

6.4.1.a
6.4.3.a

Methodology Handbook / SCADE Suite with DO-178C Objectives / 5 - 72

1 CTP is efficient: test cases and
procedures are primarily developed
from HLR. This verification strategy
focuses first on HLR functionality and
integration issues that are often poorly
and lately addressed in a traditional
verification process.

2 CTP optimizes testing efforts: In the
context of level A and B applications, the
development of test cases and
procedures usually requires a huge
effort to satisfy all testing objectives.
When using SCADE, this testing effort is
significantly reduced for the following
reasons:
• Regarding the logics (with SCADE

Suite), the same requirement-based
verification cases and procedures (see
Section 5.3.2) are used for both model
simulation on host and testing on
target as in Figure 5.9.

Figure 5.9: Factor simulation and test cases with
SCADE Test

• There is no need to develop additional
test cases and procedures for Logics
LLR that are already covered by HLR-
based test cases and procedures. As
stated in [DO-178C], §6.4: “If a test case
and its corresponding test procedure
are developed and executed for
hardware/software integration
testing or software integration
testing, and satisfy the requirements-

based coverage and structural
coverage, it is not necessary to
duplicate the test for low-level
testing.”

Figure 5.10 provides an overview of the
Combined Testing Process.

Figure 5.10: Combined Testing Process

The testing effort is mainly focused on
HLR-based testing for the application code
and most of low-level tests can be
removed for this software part that may
change several times during the software
life cycle. On the other hand, low-level
library components and drivers are usually
developed with a traditional approach
(manual coding) and low-level tests must
be considered in this context. Because the
corresponding code is quite stable during
the software life cycle, the additional
testing effort is not significant for this
software part.

5.5.3 Compliance of EOC with HLR (MB.A-6
#1) and robustness with HLR (MB.A-6
#2)

Test cases and procedures are developed
firstly on the basis of HLR and executed in
the target environment. They should
include normal range test cases and
robustness test cases.

Qualified Semantic Checks

Qualified Model
Simulation

Qualified Model Coverage

Model EOC

Qualified Test
Retargeting

Common Requirements Based
Verification Cases

Application
Code

Libraries,
Drivers

Massive
Low-Level Tests

Tests primarily
built from HLRs

Derived Low-Level Tests

Low-Level Tests

Model (LLR)
coverage
analysis

Methodology Handbook / SCADE Suite with DO-178C Objectives / 5 - 73

In the context of SCADE Suite, users can
reuse existing simulation cases developed
for design verification (see Section 5.3.2)
with the support of SCADE Test Target
Execution as in Figure 5.11.

Figure 5.11: Factor simulation and test cases with SCADE Test Target Execution for logics

5.5.4 Compliance of EOC to LLR (MB.A-6
#3)

TRACEABLE LLR

Test cases for traceable LLR can be shared
with HLR tests wherever appropriate:
there is no need to develop additional test
cases and procedures for Logics LLR that
are already covered by HLR-based test
cases and procedures.

The assessment of Logics LLR coverage is
supported by SCADE Test Model Coverage.
Full model coverage with Test Model
Coverage is required to ensure compliance
of the EOC to traceable LLR as highlighted
in Figure 5.10.

This approach is valid and complete in the
scope of sequential logic algorithms. In the
specific context where the SCADE Suite
model includes numerical computations,
additional verification activities must be
considered:

• For library-based numerical algorithms:
SCADE Test Model Coverage additional
coverage points can be used to capture

user-selected numerical equivalence
classes.

• For non-library-based numerical
algorithms: There is no efficient way to
capture numerical equivalence classes
with SCADE Test Model Coverage.
Additional equivalence classes analysis
(by manual means) is required to ensure
the full coverage of numeric
computations by the tests.

DERIVED LLR

Additionally, verification objectives of Table
MB.A-6 #3 require specific derived-LLR
based testing. These tests should include
both normal and robustness
considerations.

The testing strategy depends on the
design choice selected for this derived
LLR.

Regarding the logics, there are two cases:

1 The derived LLR was implemented as a
library operator: the applicant must test
the implementation of this operator
from the HLR established for this
operator (component-based testing)
and additionally, the integration of this

SCADE Verification
Cases and Procedures

Target Test
Harnesses

Target
Report

Target Testing
Environment

TTE

Target Test
Harness
Genertor

Methodology Handbook / SCADE Suite with DO-178C Objectives / 5 - 74

operator within upper-level operators.
This activity is complete when full model
coverage is achieved with SCADE Test
Model Coverage for coverage criteria
and for coverage of equivalence classes
other than those addressed by SCADE
Test Model Coverage. For further
information on Model Coverage and its
coverage criteria, refer to Chapter 6/

2 The derived LLR was implemented
directly within the applicative part (no
factoring effect): specific LLR-based
testing must be considered in this case.

The objective is to minimize as much as
possible the number of non-library-based
derived LLR to maximize the benefit of
model-based verification.

5.5.5 Robustness of EOC with LLR (MB.A-6
#4)

A robust design strategy is key, not only to
make an application robust, but also to
optimize the verification efforts required to
verify the ability of the software to respond
to abnormal inputs and conditions.

Regarding the logics, Figure 4.12 provides a
typical example of SCADE Suite robust
architecture where low-level robustness
can be managed with different non-
exclusive techniques for the same
application.

The strategy of EOC verification with
respect to the robustness aspects depends
on this architecture choice as follow:

1 Use of robust library operators: Each
library operator is unit-tested according
to its associated robust requirements.

Then, the verification of the integration
of such robust operator within the
application is addressed in the context
of MB.A-6 #2 objectives and is fully
supported by SCADE Test (see Section
5.5.3)

2 Use of non-robust library operators: in
this context specific robustness
verification activities must be
considered at the application level
including low-level robustness tests of
the generated code.

The usage of robust library operators
(solution 1) is highly recommended to
apply an optimized model-based
verification strategy where the robust
components are tested once according
their respective HLR.

5.5.6 Compatibility of EOC with target
(MB.A-6 #5)

Compatibility of the EOC with target
computer is verified by HW/SW
integration testing of the whole
application in the target environment.

The whole software application usually
includes several components (developed
with SCADE Suite or manually coded) and
its scope can be beyond the SCADE
application itself.

Target testing of the whole system is
generally performed from system-based
requirements on a real test bench that
includes communication drivers with
interfaces such as ARINC 429 and/or
ARINC 664 (AFDX).

Methodology Handbook / SCADE Suite with DO-178C Objectives / 5 - 75

5.5.7 Verification summary for testing
outputs from integration process

Table 5.8 summarizes verification
objectives and methods for testing
outputs of the integration process.
Table 5.8: DO-331 Table MB.A-6 Objectives Achievement

Objective
Description

Activity Ref Verification Method

1 Executable object code
complies with high-
level requirements

6.4.2
6.4.2.1
6.4.3
6.5
MB.6.8.2.a (see Item 1)

HLR-based testing in the target environment with SCADE Test Target Execution

2 Executable object code
is robust with high-level
requirements

6.4.2
6.4.2.
6.4.3
6.5
MB.6.8.2.a (see Item 1)

HLR-based robustness testing in the target environment with SCADE Test Target
Execution

3 Executable object code
complies with low-level
requirements

6.4.2
6.4.2.1
6.4.3
6.5

HLR-based testing in the target environment with full model coverage with SCADE Test
Target Execution
Analysis of model coverage and equivalence classes for non-library-based numerical
computations

4 Executable object code
is robust with low-level
requirements

6.4.2
6.4.2.2
6.4.3
6.5

Library-based robustness testing with SCADE Test Target Execution
Complementary robustness low-level testing for functions not based on robust libraries

5 Executable object code
is compatible with
target computer

6.4.1.a
6.4.3.a

HW/SW integration testing of the whole application

Methodology Handbook / SCADE Suite with DO-178C Objectives / 6 - 77

6/ Verification of the Verification Activities

6.1 Verification Objectives

As stated in [DO-178C] §6, the software
verification process is a technical
assessment not only of the outputs of the
software planning process and software
development processes but also of the
outputs of the software verification
process. In this context, we usually talk
about the “verification of the verification
outputs” with the objective to assess how
well the verification activities mentioned in
chapter 5 were performed.

Table 6.1 summarizes the objectives for the
verification of verification process results.

Item 1: As described in section MB.6.8.2.b of
supplement [DO-331], the MB.6.6.2.b activity is only
required when simulation is used as a means of
compliance of any objectives 5, 6, 7, or 8 of this table.

Item 2: As described in section MB. 6.8.2 of supplement
[DO-331], these three objectives are only required when
simulation is used as a means of compliance of
objectives 1 and 2 of Annex Table MB.A-6.

Table 6.1: DO-331 Table MB.A-7

Objective Description Activity Ref

1 Test procedures are correct 6.4.5

2 Test results are correct and
discrepancies are explained

6.4.5

3 Test coverage of high-level
requirements is achieved

6.4.4.1
MB.6.8.2.a

4 Test coverage of low-level
requirements is achieved

6.4.4.1
MB.6.7

5 Test coverage of software structure
(modified condition/decision
coverage) is achieved

6.4.4.2.a
6.4.4.2.b
6.4.4.2.d
6.4.4.3
MB.6.8.2.b
(see Item 1)

6 Test coverage of software structure
(decision coverage) is achieved

6.4.4.2.a
6.4.4.2.b
6.4.4.2.d
6.4.4.3
MB.6.8.2.b
(see Item 1)

7 Test coverage of software structure
(statement coverage) is achieved

6.4.4.2.a
6.4.4.2.b
6.4.4.2.d
6.4.4.3
MB.6.8.2.b
(see Item 1)

8 Test coverage of software structure
(data coupling and control coupling)
is achieved

6.4.4.2.c
6.4.4.2.d
6.4.4.3
MB.6.8.2.b

9 Verification of additional code, that
cannot be traced to Source Code, is
achieved

6.4.4.2.b

MB
10

Simulation cases are correct (see Item
2)

MB.6.8.3.2

MB
11

Simulation procedures are correct
(see Item 2)

MB.6.8.3.2

MB
12

Simulation results are correct and
discrepancies explained (see Item 2)

MB.6.8.3.2

Table 6.1: DO-331 Table MB.A-7 (Continued)

Objective Description Activity Ref

Methodology Handbook / SCADE Suite with DO-178C Objectives / 6 - 78

6.2 Verification of Test Procedures and
Results

The review of SCADE test cases must
confirm:

• Test cases are traceable to HLR;
• Test cases satisfy criteria of normal and

robustness testing;
• All HLR are covered by test cases.

The review of SCADE test procedures must
confirm that test cases, including
expected results, are correctly developed
into test procedures. SCADE LifeCycle
Reporter for SCADE Test12 supports this
activity.

As illustrated by Figure 5.9 and Figure 5.11,
both simulation and test cases are
factorized for the verification of logics with
the support of SCADE Test Target
Execution. In this context, the qualification
of SCADE Test Target Execution as a DO-
330/TQL-5 tool removes the need for
reviewing target test harnesses if
simulation cases and procedures were
already reviewed during design
verification.

The review of test results must confirm:

• Test results are correct;
• Discrepancies between actual and

expected results generate problem
reports.

VERIFICATION OF LOGIC TEST RESULTS

Regarding the logics, test results are
usually generated by the user target
testing environments and include a pass/
fail status. Typical testing environment
such as RTRT from IBM, TestBed® from

LDRA, or VectorCAST® from Vector can be
used for the verification of logics on target.
These tools support a qualification process
at DO-330/TQL-5 and ensure that test
results are correctly evaluated.

6.3 HLR Coverage Analysis

The objective of this activity is to verify that
the HLR are fully covered by test cases.

This is achieved by peer review of HLR test
cases traceability matrices.

Regarding the logics, if common
requirement-based verification cases and
procedures are used for both model
simulation on host and testing on target,
HLR verification cases traceability analysis
was already performed (partially or fully) in
the context of model simulation to satisfy
some objectives of Table MB.A-4 (see
Section 5.3.2).

6.4 LLR Coverage Analysis

6.4.1 SCADE Test Model Coverage overview

SCADE Test Model Coverage performs
model coverage analysis of SCADE Suite
models.

SCADE Test Model Coverage takes as
inputs a SCADE Suite model and a set of
HLR-based test cases and procedures and
supports model coverage analysis with so-
called code coverage implication with
respect to MB.B.11 FAQ#11 [DO-331]. Such
implication means that reaching 100%
model coverage guarantees 100% code
coverage of the SCADE Suite-KCG
generated code. The HLR-based test cases

12.Available from SCADE 2020 R2 onwards.

Methodology Handbook / SCADE Suite with DO-178C Objectives / 6 - 79

and procedures used for coverage
measurement are those previously
developed to satisfy Table MB.A-6
objectives #1, #2, #3, and #4. SCADE Test
Model Coverage generates a model
coverage report and evidence for
structural coverage.

Model coverage analysis focuses on the
functional origin of coverage holes,
whether they are due to lack of testing,
inadequate high-level requirements, or
dead, deactivated, or unintended low-level
requirements.

The following sections describe the
activities to be addressed in order to satisfy
the DO-178C MB.A-7#4 to #7 objectives.

6.4.2 Logics LLR coverage analysis (MB.A-
7#4)

The objective of this activity is to verify that
the Logics LLRs are fully covered by test
cases.

In the context of SCADE development,
Logics LLRs are described in the form of
SCADE Suite models and model coverage
analysis is a means of assessing how far

the behavior of a model was explored. It is
complementary to HLR/LLR traceability
analysis and high-level requirements
coverage analysis.

Model coverage analysis verifies that every
element of the model (representing a LLR)
was fully exercised when requirements-
based tests are exercised. It supports in
particular the detection of unintended
functions in the model (see Section 2.4.4
and Section 5.3.2).

6.4.2.1 Logics LLR coverage analysis with
Model Coverage

Model Coverage measures the coverage of
a model by high-level requirements-based
test cases. The purpose of this measure is
to assess how thoroughly the model was
exercised.

For SCADE Suite models, Model Coverage
criteria are based on the observation of
how a flow of values is used. For details
about criteria, see “Model coverage criteria”.

Figure 6.1 shows the position of SCADE Test
Model Coverage within the software
verification flow.

Methodology Handbook / SCADE Suite with DO-178C Objectives / 6 - 80

Figure 6.1: Position of SCADE Test Model Coverage within the verification flow

The use of SCADE Test Model Coverage is
decomposed in the following phases:

1 Model Coverage Acquisition: Running
test cases with the SCADE Test
Environment for Host module, while
measuring the coverage of each
operator.

2 Model Coverage Analysis: Identifying
the operators that are not fully covered.

3 Model Coverage Resolution: Adding
test cases or providing the explanation
or the necessary fixes for each operator

that is not fully covered. Fixes can be in
the high-level requirements, in the
model, or both.

Figure 6.2 illustrates the use of SCADE Test
Model Coverage. The coverage result for
each operator and child elements is
indicated via colors and coverage ratios
about observed coverage points. The tool
provides also detailed explanations about
operator features that are not fully
covered.

System
Requirements

Process

High Level
Requirements Requirements-based

Test Creation

SCADE Suite Models

Test Suite
SCADE Suite

Editor

SCADE Test
Model Coverage
(Qualified

)

SW Verification Flow

System & SW Development Flow

System

SW Development SW Verification

(LLR & Architecture)

Methodology Handbook / SCADE Suite with DO-178C Objectives / 6 - 81

Figure 6.2: Model coverage analysis/resolution with SCADE Test Model Coverage

Model coverage holes may reveal the
following deficiencies:

1 Shortcomings in high-level
requirements-based test cases and/or
procedures: In that case, resolution
consists in adding missing
requirements-based test cases and/or
procedures.

2 Inadequacies or shortcomings in the
high-level requirements: In that case,
resolution consists in fixing HLR and
updating the test suite.

3 Previously unidentified derived-
requirements: In that case, the
appropriate derived-requirement-based

test cases and procedures must be
developed and executed to provide the
missing coverage (see Section 5.5.4 for
derived low-level testing strategy).

4 Deactivated functionality in model:
Resolution must be done according to
DO-331 MB.6.7.2.d.13 Moreover, the
deactivated functionality should be
identified as such in the design.

5 Unintended functionality in model: In
that case, resolution consists in
removing the functionality and
assessing the effects and needs for re-
verification

13.For deactivated functionality expressed by a design model that is not intended to be realized in any
configuration used within an aircraft or engine, a combination of analysis, simulation, and testing should
show that its realization is prevented, isolated, or eliminated. For deactivated functionality expressed by a
design model that is only intended to be realized in certain approved configurations used within an
aircraft or engine, the operational configuration needed for normal realization of these requirements
should be established and additional verification cases and verification procedures developed to satisfy the
required coverage objectives. See [DO-331], §MB.6.7.2,d.

Methodology Handbook / SCADE Suite with DO-178C Objectives / 6 - 82

EXAMPLE 1: INSUFFICIENT TESTING

Figure 6.3: Non activated Confirmator

• Analysis: The Confirmator in Figure 6.3
was not raised during testing activities.
Analysis concludes that the requirement
is correct but testing is not sufficient.

• Resolution: Develop additional tests.

EXAMPLE 2: LACK OF ACCURACY IN THE HLR

The Integrator in Figure 6.4 was never reset
during the tests. Is the “reset” behavior an
unintended function?

Figure 6.4: Uncovered “reset” activation

• Analysis: Resetting the filter here is a
correct software requirement, but the
HLR did not specify that changing
speed regulation mode implies
resetting all filters, so no test case
exercised this situation.

• Resolution: Complement the HLR.

6.4.2.2 Model coverage criteria

The model coverage criteria of SCADE Test
Model Coverage were designed to satisfy
the following objectives:

• Match DO-331 model coverage
principles

• Fit the entire Scade language: data flow
constructs as well as control-oriented
constructs (state machines, clocked
blocks)

• Provide a sound and accurate
assessment of the fact that every model
construct and flow are exercised by test
and/or simulation

Model coverage criteria defined within
SCADE Test Model Coverage are strongly
linked to the characteristics of models:

• Models describe the functionality of
software, while a C program describes
its implementation. It creates a major
difference in terms of abstraction level
(feature coverage versus code coverage)
and of coverage of multiple occurrences.

• Models are based on functional data
flows and state machines, while most
programming languages and their
criteria are sequential.

For SCADE Suite models, we use tags to
represent coverage points. Model
coverage criteria are based on tag
propagation and observation through
observable outputs of the model. Setting
coverage criteria amounts to defining
where tags are introduced in the model
and what is the semantic of tag
propagation to be used for Boolean
primitives. For criteria that distinguish
Boolean flows (see ODC and OMC/DC), two
tags are introduced by the "bool_tag"
primitive: one when the flow takes value
true and the other when it is false. Each
tag introduced in the model is expected to
reach an observation point (red circle on
output in Figure 6.5). A point is covered if
the model is stimulated by an input
sequence leading to the observation of the

Methodology Handbook / SCADE Suite with DO-178C Objectives / 6 - 83

corresponding tag. The overall coverage
measure is the ratio of observed tags to
introduced tags.

Figure 6.5: Tag propagation and output observation for SCADE Suite model coverage

The model coverage criteria for SCADE
Suite are:

1. INFLUENCE

This criterion measures coverage based on
tags attached to data flows of the model
and on tags related to the activation of
scopes introduced by control structures
(state machines and conditional activation
operators). With this criterion, Boolean

primitives behave as any combinatorial
primitive by always propagating the tags
present on the inputs to the outputs
regardless of the actual Boolean value of
the streams.

This criterion is the least demanding one: a
test suite that covers a model for Influence
criterion does not necessarily covers this
model for other criteria (ODC or OMC/DC).

Figure 6.6: Tags and observation for Influence

a

b

i o

PRE

2

4

0

tag

bool_tag

Input1

Input2

Output1

Input3

Output2

Out

Out

Methodology Handbook / SCADE Suite with DO-178C Objectives / 6 - 84

2. OBSERVABLE DECISION COVERAGE (ODC)

This criterion measures coverage based on
tags able to distinguish between the
influence of True and the influence of
False for the monitoring of Boolean flows.
With this criterion, the propagation rules
for Boolean primitives are the same as for
Influence. The semantics of tag

propagation of this criteria ignores the MC/
DC masking effect of Boolean flows on
coverage measurements.

This criterion is intermediary between
Influence and OMC/DC: a test suite that
covers a model for ODC criterion also
covers this model for Influence but does
not necessarily cover it for OMC/DC.

Figure 6.7: Tags and observation for ODC

3. OBSERVABLE MODIFIED CONDITION/DECISION
COVERAGE (OMC/DC)

This criterion measures coverage based on
the same tags as ODC (see figure above)
and a semantics of tag propagation that
takes into account the masking effect over
coverage measurements.

This criterion is the most demanding one:
a test suite that covers a model for OMC/
DC also covers this model for both ODC
and Influence.

Table 6.2 summarizes all coverage criteria
used by SCADE Test Model Coverage.

Alarm

Landing

LowAltitude

Ov erSpeed

A

Table 6.2: Coverage criteria in SCADE Test Model Coverage for SCADE Suite models

Coverage Criterion Applies to Synopsis

Influence Any flow type All connection points were tested as able to influence an output.

Observable Decision
Coverage

Boolean expressions All connection points were tested as able to influence an output and all
Boolean flows have taken both True/False values while influencing an output
without taking into account the masking effect of Boolean operators.

Observable Modified
Condition/Decision
Coverage

Boolean expressions All connection points were tested as able to influence an output, and all
Boolean flows have taken both True/False values while influencing an output
by taking into account the masking effect of Boolean operators.

Methodology Handbook / SCADE Suite with DO-178C Objectives / 6 - 85

6.4.3 Source code coverage analysis (from
MB.A-7#5 to MB.A-7#8)

6.4.3.1 SCADE Suite generated code
coverage analysis

With respect to DO-331 FAQ#11 [DO-331], it
is possible to use model coverage to
achieve structural code coverage. SCADE
Test Model Coverage guarantees
implication for structural coverage under
certain conditions [MC-FAQ11].

With regard to MB.B.11 FAQ#11 [DO-331],
whenever reaching 100% model coverage
with SCADE Test Model Coverage and
OMC/DC criterion, users can claim 100%
code coverage of the SCADE Suite-KCG
generated code in the MC/DC sense. This
property also holds for other criteria; 100%
model coverage with ODC (resp. Influence)
criterion guarantees 100% coverage of the
code in the DC (resp. Statement Coverage)
sense. Model coverage analysis must be
performed with the same options as those
used to generate the target code with
SCADE Suite KCG.

In addition, SCADE Test Model Coverage
produces warnings about exceptions in
the model that produce unreachable parts
in the SCADE Suite KCG-generated code.
In such cases, users have to provide
justifications or perform complementary
activities to achieve structural coverage
objectives as detailed in [MC-FAQ11].

6.4.4 Data and control coupling verification
(MB.A-7#8)

6.4.4.1 Definitions

DO-178C requires that test coverage of the
data and control coupling is achieved and
it defines:

• Data coupling as “The dependence of a
software component on data not
exclusively under the control of that
software component.”

• Control coupling as “The manner or
degree by which one software
component influences the execution of
another software component.”

6.4.4.2 Verification of data and control
coupling within models

The qualification of SCADE Suite KCG
ensures that data coupling and control
coupling at model level are exactly
reflected in the generated code.

Regarding the logics with SCADE Suite:

• Data coupling is accurately and
completely described in terms of
operators’ interfaces and fully explicit
operators’ connections.

• Control coupling is accurately and
completely described in terms of
operators’ activation, either at every
cycle of the basic clock or subject to
derived clocks (conditional activation)

Data and control coupling verifications are
performed by a combination of activities.

DESIGN REVIEW AND ANALYSIS

Data coupling and control coupling is
verified first by design review and analysis

with semantic checks using SCADE Suite
Checker.

Methodology Handbook / SCADE Suite with DO-178C Objectives / 6 - 86

MODEL COVERAGE ANALYSIS

SCADE Test Model Coverage analysis must
confirm that 100% of the components
control and data coupling structures are
exercised by the requirement-based test
cases and procedures. Since data and
control coupling effects are part of the
influence effects (yet not limited to them),
the model coverage criteria take into
account data and control coupling as part
of the assessment of influence. For any C
component integrating C1 and C2, data
and control coupling of C1 and C2 are
assessed by SCADE Test Model Coverage if
model coverage is measured at C level.
This holds for any of the three criteria:
Influence, ODC, or OMC/DC.

6.4.4.3 Verification of data and control
coupling between model and
external environment

This activity is performed in the traditional
way via a combination of design and code
reviews and requirement-based
integration testing.

6.4.5 Verification of additional code
untraceable to source code (MB.A-
7#9)

This activity is required for level A software
only. Source to object code traceability
analysis must address the following issues:

• Identify object code that is not ‘directly
traceable’ to the source code

• Perform additional verification of this
untraceable object code (if any)

Source code to object code traceability
analysis must confirm that the target C
compiler does not generate additional
code that cannot be traced to the source
code, based on a representative sample of
C code defined by the coding standard
(see [DO-248C], DP #12).

Note: For logics, SCADE Suite CVK provides
a representative sample of KCG generated
code that may be used for this analysis.

6.4.6 Verification of simulation cases,
procedures and results (MB.A-7#10,
#11 and #12)

Objectives MB.A-7#10, #11 and #12 are not
applicable in the context of the verification
process described in this paper. No
verification credit is claimed from
simulation to achieve the objectives of
Table MB.A-6 (EOC verification).

Methodology Handbook / SCADE Suite with DO-178C Objectives / 6 - 87

6.5 Summary of Verification of
Verification

Table 6.3 summarizes verification
objectives and methods for the verification
of verification process results.
Table 6.3: DO-331 Table MB.A-7 Objectives Achievement

Objective Description Activity Ref Verification Method

1 Test procedures are correct. 6.4.5 Peer review of SCADE Suite test procedures (see Note 1)

2 Test results are correct and
discrepancies are explained.

6.4.5 Analysis of test report generated by user target testing
environment (report not generated by SCADE tools but by
external user targets)

3 Test coverage of high-level
requirements is achieved.

6.4.4.1
MB.6.8.2.a

Peer review of HLR test cases and procedures traceability matrices
generated by SCADE LifeCycle ALM Gateway

4 Test coverage of low-level
requirements is achieved.

6.4.4.1
MB.6.7

Analysis of SCADE Suite model coverage with SCADE Test Model
Coverage

5 Test coverage of software structure
(modified condition/decision
coverage) is achieved.

6.4.4.2.a
6.4.4.2.b
6.4.4.2.d
6.4.4.3
MB.6.8.2.b

Analysis of SCADE Suite model/code coverage with SCADE Test
Model Coverage (observable modified condition/decision
coverage)

6 Test coverage of software structure
(decision coverage) is achieved.

6.4.4.2.a
6.4.4.2.b
6.4.4.2.d
6.4.4.3
MB.6.8.2.b

Analysis of SCADE Suite model/code coverage with SCADE Test
Model Coverage (observable decision coverage)

7 Test coverage of software structure
(statement coverage) is achieved.

6.4.4.2.a
6.4.4.2.b
6.4.4.2.d
6.4.4.3
MB.6.8.2.b

Analysis of SCADE Suite model/code coverage with SCADE Test
Model Coverage (influence)

8 Test coverage of software structure
(data coupling and control coupling) is
achieved.

6.4.4.2.c
6.4.4.2.d
6.4.4.3
MB.6.8.2.b

Analysis of SCADE Suite model control and data coupling with
SCADE Test Model Coverage (influence)

9 Verification of additional code, that
cannot be traced to Source Code, is
achieved

6.4.4.2.b Source code to object code traceability analysis
Logics: (see Note 2)

MB10 Simulation cases are correct (see Item
2)

MB.6.8.3.2 N/A (see Note 3)

Methodology Handbook / SCADE Suite with DO-178C Objectives / 6 - 88

Item 1: As described in section MB.6.8.2.b of
supplement [DO-331], the MB.6.6.2.b activity is only
required when simulation is used as a means of
compliance of any objectives 5, 6, 7, or 8 of this table.

Item 2: As described in section MB. 6.8.2 of supplement
[DO-331], these three objectives are only required when
simulation is used as a means of compliance of
objectives 1 and 2 of Annex Table MB.A-6.

Note 1: Both simulation cases and test cases are
factorized with the support of SCADE Test Target

Execution. In this context, the qualification of SCADE
Test Target Execution (as DO-330/TQL-5) removes the
need for reviewing target test procedures if simulation
cases and procedures have already been reviewed
during design verification

Note 2: Support of CVK sample may be considered for
this activity

Note 3: No verification credit is claimed from simulation
to achieve the objectives of Table MB.A-6 (see Item 2)

MB11 Simulation procedures are correct
(see Item 2)

MB.6.8.3.2 N/A (see Note 3)

MB12 Simulation results are correct and
discrepancies explained (see Item 2)

MB.6.8.3.2 N/A (see Note 3)

Table 6.3: DO-331 Table MB.A-7 Objectives Achievement (Continued)

Objective Description Activity Ref Verification Method

Appendixes and Index

Methodology Handbook / SCADE Suite with DO-178C Objectives / A - 93

A/References

[AC 20-115C] Advisory Circular “Airborne
Software Assurance”, Federal
Aviation Administration, 07/19/2013

[AMC-20-115] "Software Considerations for
Certification of Airborne Systems
and Equipment", ED Decision 2013/
026/R, EASA, 12/09/2013

[ARP-HB] Methodology Handbook, “Efficient
Avionics Systems Engineering with
ARP-4754A Objectives Using SCADE
System®”, Esterel Technologies,
Second Ed., 2015.

[ARP 4754A] “Guidelines for Development of Civil
Aircraft and Systems”, Society of
Automotive Engineers, 2010-12.

[Camus] “A verifiable architecture for multi-
task, multi-rate synchronous
software”, J. L. Camus, P. Vincent,
O. Graff, and S. Poussard.
Embedded Real Time Software
Conference ERTS 2008, Toulouse,
France.

[Caspi] “Integrating model-based design
and preemptive scheduling in
mixed time and event-triggered
systems”, N. Scaife and P. Caspi,
Verimag Report Nr. TR-2004-12,
June 1, 2004, (see www-
verimag.imag.fr).

[CVK-RM] “SCADE Suite CVK Reference
Manual,” Esterel Technologies, CVK
6.6, September 2016.

[CVK-UM] “SCADE Suite CVK User Manual,”
Esterel Technologies, CVK 6.6,
September 2016.

[DO-178C] “Software Considerations in
Airborne Systems and Equipment
Certification”, RTCA Inc., December
2011.

[DO-330] “Software Tool Qualification
Considerations”, RTCA Inc.,
December 2011.

[DO-331] “Model-Based Development and
Verification Supplement to DO-
178C and DO-278A”, RTCA Inc.,
December 2011.

[DO-333] “Formal Methods Supplement to
DO-178C and DO-278A”, RTCA Inc.,
December 2011.

[DO-248C] “Supporting Information for DO-
178C and DO-278A”, RTCA Inc.,
December 2011.

[DO-254] “Design Assurance Guidance for
Airborne Electronic Hardware”,
RTCA Inc., April 2000.

[ED–79] “Guidelines for Development of Civil
Aircraft and Systems”, EUROCAE,
December 2010.

[Esterel] “The Foundations of Esterel”, Gérard
Berry. In “Proofs, Languages, and
Interaction, Essays in Honour of R.
Milner,” G. Plotkin, C. Stirling, and
M. Tofteed, MIT Press (2000).

[Harel] “Statecharts: a Visual Approach to
Complex Systems”, D. Harel. In
Science of Computer Programming,
vol. 8, pp. 231-274 (1987).

[ISO-Ada] Ada Reference Manual - ISO
8652:1995

[ISO-C] Programming languages - C (ISO/
IEC 9899:1990)

[KCG-TOR] “SCADE Suite KCG Tool Operational
Requirements”, KCG-SRS-011,
Esterel Technologies, March 14,
2016.

[Lustre] “The Synchronous Dataflow
Programming Language Lustre”, N.
Halbwachs, P. Caspi, P. Raymond,
and D. Pilaud, Proceedings of the
IEEE, 79(9):1305-1320, September
1991.

[MC-FAQ11] “Model Coverage for SCADE Suite -
FAQ#11: Application Conditions and
Property”, MC-SRS-004,
2020-04-06.

[NASA-MCDC] “A Practical Tutorial on Modified
Condition/Decision Coverage”, K. J.
Hayhurst (NASA), D. Veerhusen
(Rockwell Collins), J. J. Chilenski
(Boeing), L. K. Rierson (FAA).

Methodology Handbook / SCADE Suite with DO-178C Objectives / A - 94

[SC-SDVST] “SCADE Suite® Application
Software Development Standard”,
Esterel Technologies, 2017-09-13.

[SCS-KCG-LRM] “The Scade 6 Language”, KCG-SRS-
007, Esterel Technologies, March 17,
2016.

[SLC-UM] “SCADE LifeCycle User Manual”,
Version R19.2 release, Esterel
Technologies, June 2018.

[SUITE-UM] “SCADE Suite User Manual”, Version
R19.2 release, Esterel Technologies,
June 2018.

[SUITE-TM] “SCADE Suite Technical Manual”,
Version R19.2 release, Esterel
Technologies, June 2018.

[TEST-UM] “SCADE Test User Manual”, Version
R19.2 release, Esterel Technologies,
June 2018.

Methodology Handbook / SCADE Suite with DO-178C Objectives / B - 95

B/Acronyms and Glossary

ACRONYMS

AC Advisory Circular

ANAC Agência Nacional de Aviação Civil

ALM Application Lifecycle Management

API Application Programming Interface

AR MAK Air Register of Interstate Aviation
Committee (Russia)

ARP Aerospace Recommended Practices

BC Basic Coverage

CAAC Civil Aviation Administration of China

CAST Certification Authorities Software
Team

COTS Commercial Off-The-Shelf

CMS Configuration Management System

CPU Central Processing Unit

CTP Combined Testing Process

CVK Compiler Verification Kit

DAL Development Assurance Level

DC Decision Coverage

DP Discussion Paper

EASA European Aviation Safety Agency

EOC Executable Object Code

EUROCAE European Organization for Civil
Aviation Equipment

FAA Federal Aviation Administration

FHA Functional Hazard Analysis

FIR Finite Impulse Response

FM Formal Methods

HLR High-level Requirements

IDE Integrated Development Environment

IP Intellectual Property

IIR Infinite Impulse Response

KCG Qualified Code Generator

HTML HyperText Markup Language

LLR Low-level Requirements

MC/DC Modified Condition/Decision
Coverage

MB Model-Based

MBD Model-Based Development

N/A Not Applicable

N.B. Nota Bene

ODC Observable Decision Coverage

OMC/DC Observable Modified Condition/
Decision Coverage

OOT Object-Oriented Technology

PDI Parameter Data Item

PSSA Preliminary System Safety
Assessment

ROI Return On Investment

RT Related Techniques

RTCA Radio Technical Commission for
Aeronautics, RTCA, Inc.

RTOS Real Time Operating System

SAE Society of Automotive Engineers

SCADE Safety Critical Application
Development Environment

SIP Software Installation Procedure

SQA Software Quality Assurance

SRATS System requirements allocated to
software

SSA System Safety Assessment

SVP Software Verification Plan

SysML Systems Modeling Language

SW Software

TAS Tool Accomplishment Summary

TECI Tool Life Cycle Environment
Configuration Index

TCI Tool Configuration Index

TOR Tool Operational Requirements

TORD Tool Operational Requirements Data

TQL Tool Qualification Level

TQP Tool Qualification Plan

TSO Timing and Stack Optimizer

TSV Timing and Stack Verifiers

TTE Test Target Execution

UML Unified Modeling Language

WCET Worst Case Execution Time

Methodology Handbook / SCADE Suite with DO-178C Objectives / B - 96

GLOSSARY

Extracts from [DO-178C].

Certification
Legal recognition by the certification authority
that a product, service, organization, or a person
complies with the requirements. Such
certification comprises the activity of technically
checking the product, service, organization, or
person, and the formal recognition of compliance
with the applicable requirements by issue of a
certificate, license, approval, or other documents
as required by national laws and procedures. In
particular, certification of a product involves: (a)
the process of assessing the design of a product
to ensure that it complies with a set of standards
applicable to that type of product so as to
demonstrate an acceptable level of safety; (b) the
process of assessing an individual product to
ensure that it conforms with the certified type
design; (c) the issuance of a certificate required by
national laws to declare that compliance or
conformity was found with standards in
accordance with items (a) or (b) above.

Certification credit
Acceptance by the certification authority that a
process, product, or demonstration satisfies a
certification requirement.

Condition
A Boolean expression containing no Boolean
operators except for the unary operator (NOT).

Coverage analysis
The process of determining the degree to which a
proposed software verification process activity
satisfies its objective.

Data coupling
The dependence of a software component on
data not exclusively under the control of that
software component.

Deactivated code
Executable object code (or data) that, by design, is
either (a) not intended to be executed (code) or
used (data), for example, a part of a previously
developed software component; or (b) is only
executed (code) or used (data) in certain
configurations of the target computer
environment, for example, code that is enabled by
a hardware pin selection or software
programmed options. [...]

Dead code
Executable object code (or data) which exists as a
result of a software development error but cannot
be executed (code) or used (data) in an
operational configuration of the target computer
environment. It is not traceable to a system or
software requirement. [An exception is embedded
identifiers.]

Decision
A Boolean expression composed of conditions
and zero or more Boolean operators. A decision
without a Boolean operator is a condition. If a
condition appears more than once in a decision,
each occurrence is a distinct condition.

Error
With respect to software, a mistake in
requirements, design, or code.

Extraneous code
Code (or data) that is not traceable to any system
or software requirement. An example of
extraneous code is legacy code that was
incorrectly retained although its requirements
and test cases were removed. Another example of
extraneous code is dead code.

Failure
The inability of a system or system component to
perform a required function within specified
limits. A failure may be produced when a fault is
encountered.

Methodology Handbook / SCADE Suite with DO-178C Objectives / B - 97

Fault
A manifestation of an error in software. A fault, if it
occurs, may cause a failure.

Fault tolerance
The built-in capability of a system to provide
continued correct execution in the presence of a
limited number of hardware or software faults.

Formal methods
Descriptive notations and analytical methods
used to construct, develop, and reason about
mathematical models of system behavior. A
formal method is a formal analysis carried out on
a formal model.

Hardware/software integration
The process of combining the software into the
target computer.

High-level requirements
Software requirements developed from analysis of
system requirements, safety-related
requirements, and system architecture.

Host computer
The computer on which the software is
developed.

Independence
Separation of responsibilities, which ensures the
accomplishment of objective evaluation. (1) For
software verification process activities,
independence is achieved when the verification
activity is performed by a person(s) other than the
developer of the item being verified, and a tool(s)
may be used to achieve an equivalence to the
human verification activity. (2) For the software
quality assurance process, independence also
includes the authority to ensure corrective action.

Integral process
A process which assists the software
development, processes and other integral
processes and, therefore, remains active
throughout the software life cycle. The integral
processes are the software verification process,
the software quality assurance process, the
software configuration management process, and
the certification liaison process.

Low-level requirements
Software requirements derived from high-level
requirements, derived requirements, and design
constraints from which source code can be
directly implemented without further information.

Modified Condition/Decision Coverage
Every point of entry and exit in the program was
invoked at least once, every condition in a
decision in the program has taken all possible
outcomes at least once, every decision in the
program has taken all possible outcomes at least
once, and each condition in a decision was shown
to independently affect that decision's outcome. A
condition is shown to independently affect a
decision's outcome by: (1) varying just that
condition while holding fixed all other possible
conditions, or (2) varying just that condition while
holding fixed all other possible conditions that
could affect the outcome.

Parameter Data Item
A set of data that, when in the form of a
Parameter Data Item File, influence the behavior
of the software without modifying the Executable
Object Code and that is managed as a separate
configuration item. Examples include databases
and configuration tables.

Robustness
The extent to which software can continue to
operate correctly despite abnormal inputs and
conditions.

Methodology Handbook / SCADE Suite with DO-178C Objectives / B - 98

Standard
A rule or basis of comparison used to provide both
guidance in and assessment of the performance
of a given activity or the content of a specified
data item.

Test case
A set of test inputs, execution conditions, and
expected results developed for a particular
objective, such as to exercise a particular program
path or to verify compliance with a specific
requirement.

Test Procedure
Detailed instructions for the set-up and execution
of a given set of test cases, and instructions for the
evaluation of results of executing the test cases.

Tool qualification
The process necessary to obtain certification
credit for a software tool within the context of a
specific airborne system.

Traceability
An association between items, such as between
process outputs, between an output and its
originating process, or between a requirement
and its implementation.

Validation
The process of determining that the requirements
are the correct requirements and that they are
complete. The system life cycle process may use
software requirements and derived requirements
in system validation.

Verification
The evaluation of the results of a process to
ensure correctness and consistency with respect
to the inputs and standards provided to that
process.

Methodology Handbook / SCADE Suite with DO-178C Objectives / C - 99

C/DO-178C Qualification of SCADE Suite KCG and SCADE
Verification Tools

C-1 What Does SCADE Suite KCG
Qualification Mean and Imply?

Qualification of a tool is needed when
processes are eliminated, reduced, or
automated by the use of the tool, without
its output being otherwise verified. The
qualification process is described entirely
in §12.2 of [DO-178C] and in the full
contents of [DO-330].

Within DO-178C, Criteria 1 tools are those
whose output is part of the embedded
software; thus, they can introduce errors in
the embedded software. Therefore SCADE
Suite KCG is classified as a Criteria 1 tool.
Achieving the qualification of a
development tool is as follows:

• Using Table 12-1 of DO-178C, the Tool
Qualification Level is identified. To be
able to use KCG for generating source
code for level A application software
without verification of its output, KCG
Tool Qualification Level is TQL-1, the
most rigorous software level.

• DO-330 defines the activities, guidance,
and life cycle data required by Tool
Qualification Levels.

C-1.1 Development of SCADE Suite KCG

The SCADE Suite KCG code generator is
developed as a TQL-1 tool to be able to use
KCG for generating source code for level A
application software without verification of
its output. These objectives are described

in the following documents, audited by
Certification Authorities on a number of
past projects:

• Compliance Analysis: presents KCG
compliance with DO-330 objectives at
TQL-1

• Tool Qualification Plan (TQP): presents
all provisions taken for KCG code
generator qualification and references
other project plans

• Tool Operational Requirements (TOR):
describes KCG functionality and usage.
It matches the Developer-TOR defined
in DO-330.

• Scade Language Reference Manual:
contains the Scade language definition

• Tool Accomplishment Summary (TAS):
shows compliance status with TQP,
conditions of use, list of unresolved
defects and tool limitations

• Software Installation Procedure (SIP):
contains detailed instructions for
installing KCG

• Tool Configuration Index (TCI): presents
tool version and configuration

• Tool Life Cycle Environment
Configuration Index (TECI): presents the
software environment used for tool
certification

Methodology Handbook / SCADE Suite with DO-178C Objectives / C - 100

C-1.2 SCADE Suite KCG Life-Cycle
Documentation

Table C.1 lists the documents that are
delivered to users for the qualification of
SCADE Suite KCG.

All other lifecycle data (e.g., plans and
standards, design data, source code, or
test cases) are available and can be
audited by the Certification Authorities at
Ansys.

C-2 SCADE Test Model Coverage at
TQL-4 Level

SCADE Test Model Coverage for SCADE
Suite allows to measure the coverage of
the SCADE Suite model by test cases
without the need to verify the tool outputs.
Model coverage analysis also allows to
assess the thoroughness of simulation of
the Low-Level Requirements contained in
the model when simulation is used for
verification of model compliance to the
High-Level Requirements of the
application.

Model Coverage is used as a tool
supporting the model verification activity.
Yet, a malfunction of the tool such as
reporting positive coverage for a part of
the model that is not covered may lead to
not testing parts of the model. Therefore,
Model Coverage automates the
verification activity and may lead to failure
in detecting an error.

While the certification credit of the Model
Coverage tool covers the model coverage
objective, it also extends to SCADE Suite
KCG-generated code structural coverage
objective, provided some conditions on
models are met excluding some
exceptions [MC_FAQ11]. This is worth
explaining in details.

Table C.1: Documents delivered for KCG qualification audit by Certification Authorities

Data DO-330 Ref. Certification Kit

Tool Qualification Plan (TQP) 10.1.2 SCADE Suite KCG Tool Qualification Plan

Tool Operational
Requirements (TOR)

10.3.1 • Software requirements data of SCADE Suite KCG
• Scade 6 Language Reference Manual
• SCADE Suite KCG Software Installation Procedure (SIP)

Tool Accomplishment
Summary (TAS)

10.1.15 SCADE Suite KCG Tool Accomplishment Summary
SCADE Suite KCG Compliance Analysis to DO-330 (all levels)
SCADE Suite KCG Compliance Analysis to DO-178B (all levels)

Tool Configuration Index (TCI) 10.1.11 SCADE Suite KCG Tool Configuration Index

Tool Life Cycle Environment
Configuration Index

10.1.10 SCADE Suite KCG Tool Life Cycle Environment Configuration Index

Methodology Handbook / SCADE Suite with DO-178C Objectives / C - 101

As stated in DO-331 FAQ11, model coverage
analysis does not eliminate the need to
achieve the objectives of structural
coverage analysis per DO-178C §6.4.4.2.
However, model coverage analysis can be
used as a means for achieving structural
code coverage analysis under appropriate
conditions.

DO-331 FAQ 11 further states the
conditions, the first most important one
being: “Model coverage analysis criteria
hold the same properties as the applicable
structural code coverage analysis criteria
hold for the level of the software being
developed, for example, MC/DC coverage
for the level A.”

The coverage criteria of Model Coverage
(OMC/DC, ODC, Influence) are defined as a
correspondence to code coverage criteria
(MC/DC, DC, Statement Coverage) in such
a way that, when model coverage is
achieved for a matching criterion, say
OMC/DC, then structural coverage of
SCADE Suite KCG 6.6- generated code
holds for the corresponding criterion, say
MC/DC. In other words, SCADE Suite KCG
preserves model coverage, meaning that
achieving model coverage is enough to
ensure that structural coverage of the
generated code is also achieved for
matching coverage criteria.

This enables SCADE Test Model Coverage
and SCADE Suite KCG to meet the DO-331
FAQ11 condition to use Model coverage as
a means to also ensure structural coverage
of the SCADE Suite KCG-generated code.

As a consequence, Model Coverage is a
Criteria 2 tool as defined in DO-178C §12.2.2,
since Model Coverage automates the
verification process (i.e., model coverage),
and Model Coverage output (i.e., coverage
objectives achievement measure) is used

to justify the elimination of the verification
process other than that automated by the
tool (i.e., structural coverage). DO-178C
Table 12-1 provides the required Tool
Qualification Level (TQL) according to the
application software level. TQL-4 is
required for applicability to DAL A projects,
therefore SCADE Test Model Coverage is
qualified to TQL-4 Tool Qualification
requirements of DO-330.

C-3 SCADE Test Environment for Host
and SCADE Test Target Execution at
TQL-5 Level

SCADE Test Execution for Host and SCADE
Test Target Execution are used to
automate test execution and perform
automatic checks to determine if tests are
passed.

An error in these tools may result in
reporting a test as passed when it should
not, which can result in failure to detect an
error in SCADE models. Therefore these
tools are Criteria 3 tools as defined in DO-
178C § 12.2.2, since they automate a
verification process and could fail to detect
an error. Table 12-1 of DO-178C provides the
required Tool Qualification Level (TQL)
according to the application software level.
TQL-5 is required for applicability to DAL A
projects, therefore SCADE Test Execution
for Host and SCADE Test Target Execution
are qualified to TQL-5 Tool Qualification
requirements of DO-330.

Methodology Handbook / SCADE Suite with DO-178C Objectives / C - 102

C-1 SCADE LifeCycle Reporter at TQL-5
Level

SCADE Lifecycle Reporter is not designed
as a tool to directly detect an error in
SCADE models, but it is used to support
the SCADE model review activity. Since the
review activity is performed to detect
errors in the model being developed, a
malfunction of SCADE Lifecycle Reporter
like for example failing to report some
SCADE operators in the report, may lead to
the reviewer not reviewing part of the
model and, as a consequence, failing to
detect an error in the resulting software.
This is why, although indirectly, we
consider that SCADE Lifecycle Reporter
may “fail to detect” an error. Table 12-1 of
DO-178C provides the required Tool
Qualification Level (TQL) according to the
application software level. TQL-5 is
required for applicability to DAL A projects,
therefore SCADE Lifecycle Reporter is
qualified to TQL-5 Tool Qualification
requirements of DO-330.

Methodology Handbook / SCADE Suite with DO-178C Objectives / D - 103

D/SCADE Suite Compiler Verification Kit (CVK)

D-1 CVK Product Overview

WHAT SCADE SUITE CVK IS

While SCADE Suite KCG qualification
ensures that source code conforms to LLR
developed with SCADE Suite, CVK is a test
suite that can be used to verify that the
type of code generated by SCADE Suite
KCG is correctly compiled/executed with a
given cross-compiler on a given target.

CVK can be used for the following
purposes:

• to support early verification of the
correctness and consistency between
the development tool chain and the
target platform

• to address the verification of target

WHAT SCADE SUITE CVK IS NOT

1 CVK is NOT a validation suite of the C
compiler. Such validation suites are
generally available on the market. They
rely on running large numbers of test
cases covering all programming
language constructs, the right amount
of combinations, and various compiling
options. It is expected that the applicant
requires evidence of this activity from
the compiler provider (or other source).

2 CVK is NOT an executable software.
3 CVK is NOT a hardware test suite.

Since CVK is not a tool (it is a set of test
cases and procedures), the concept of
qualification is not relevant. Instead, CVK is
verified with the same objectives as any
other set of test cases and procedure,

including review, requirements coverage
analysis, and structural coverage analysis
(MC/DC).

ROLE OF SCADE SUITE CVK

CVK is a test suite: it is part of verification
means of the SCADE Suite KCG users.

Figure D.1 shows the complementary roles
of KCG and CVK in the verification of the
development environment of the users.

Figure D.1: Role of KCG and CVK in verification of user
development environment

1 Objective MB.A-4.3: Low-level
requirements are compatible with
target computer. CVK allows
compatibility analysis of the cross-
compiler and target regarding:
• Complexity of expressions
• Complexity of control structures
• Rounding to zero

2 Objective MB.A-4.10: Architecture is
compatible with target computer. CVK
allows compatibility analysis of the
cross-compiler and target regarding:
• Complexity of data structure nesting

User Development Project

Ansys provides

User Verification Environment

SCADE
Model

Object
Code

C
Code

SCADE
Suite KCG

C
Compiler

Verify
Compiler

Integrate KCG in
Certification Process

Compiler
Verification Kit

(CVK)

KCG
Qualification

Kit

Methodology Handbook / SCADE Suite with DO-178C Objectives / D - 104

• Number of arguments in a function
call

SCADE SUITE CVK CONTENTS

The CVK product is made of the following:

1 A CVK User’s Manual [CVK_UM] and a
Reference Manual [CVK_RM] containing:
• Installation and user instructions
• Description of the underlying

methodology
• Models description
• C sample description
• Test cases and procedures description
• Coverage matrices
• C code complexity metrics description

2 The SCADE Suite-generated C sample to
verify the C compiler.

3 A representative SCADE Suite Sample
covering the set of Scade language
primitive operators and enabling the
generation of C sample with KCG in your
own environment.

4 Requirements-based test cases to
exercise the Scade C sample with 100
percent MC/DC coverage [NASA-MCDC]
for all KCG settings.

5 Automated test procedures for
Windows platform.

C SAMPLE CHARACTERISTICS

The C sample is generated from a models
database by SCADE Suite KCG and it
exhibits the following characteristics:

• It contains an exhaustive set of
elementary C constructs that can ever
be generated from a model by the
SCADE Suite KCG Code Generator.

• It contains a set of combinations of
these elementary C constructs.

D-2 CVK Representativity

The source code generated by SCADE
Suite KCG is a subset of C with several
relevant safety properties in term of
statements, data structures and control
structures such as:

• No recursion or unbounded loop.
• No code with side effects (no a += b, no

side effect in function calls).
• Communication between operators only

goes through explicit data flows.
• No functions passed as arguments.
• No arithmetic on pointers.
• No pointer on function.
• No jump statement such as “goto” or

“continue”
• Memory allocation is fully static (no

dynamic memory allocation).
• Expressions are explicitly parenthesized.
• There are no implicit conversions.

CVK contains a representative sample of
the generated code. This sample covers a
subset of elementary C constructs as well
as deeply nested constructs identified
from C code complexity metrics.

The C code complexity metrics provided
by CVK are relevant in the context of C
compiler verification. These metrics,
selected by analyzing compiler limits
defined in C standards and cross-
compilers documentation, address
complexity both in depth and in width.

Each complexity metric has a limit defined
by CVK to cover a certain degree of
complexity. Therefore, CVK users must
check that the complexity of the code
generated by KCG from their SCADE Suite
application is in the scope of the limits
covered by CVK. SCADE Suite KCG

Methodology Handbook / SCADE Suite with DO-178C Objectives / D - 105

provides most values for these metrics in a
dedicated generated file. Some other
metrics are computed by scripts.

This approach addresses the concerns
expressed by certification authorities in
[DO-330] (see FAQ D.8 Scenario 3, section
1) for compiler verification activities in the
case of automatically generated code.

D-3 Strategy for Developing SCADE
Suite CVK

Figure D.2 summarizes the strategy for
developing and verifying CVK.

Figure D.2: Strategy for developing and verifying CVK

CVK is built in the following way:

1 Identify the C elementary constructs
generated with KCG by analyzing the
KCG software requirements (HLR and
LLR). These C constructs are identified
by a name and defined in terms of the
C-ISO standard.

2 Define relevant complexity metrics for
KCG-generated code by analyzing
compilers limits defined in C standards
and compilers documentation. These
metrics address parameters such as the

number of level of nested structures or
the number of nesting levels of control
structures.

3 Identify the combination of elementary
C constructs generated by KCG that
make sense in the compiler verification
(in particular, focus on the risky events
for a cross-compiler). These
combinations are directly based on
complexity metrics previously identified.
Their usage limits and generation
conditions are defined at this step.

4 Build the C sample:
a A suite of Scade samples, covering all

constructs, is built as material for code
generation.

b Each elementary C construct and
their combination are generated from
Scade samples root nodes with
appropriate KCG options.

c Coverage of the C subset (elementary
C constructs and combination) by the
C sample is required and verified.

5 Develop a test harness, exercising the C
sample with a set of input vectors and
verifying that the output vectors
conform to the expected output vectors.

6 Tests execution on a host platform to
verify:
a Conformance of outputs to expected

outputs.
b MC/DC coverage at C code level.

7 Tests execution for each selected target
platform to verify:
a The adaptation to a specific cross-

environment capabilities of CVK
(portability).

b The correctness of effective output
vectors on the platform.

Methodology Handbook / SCADE Suite with DO-178C Objectives / D - 106

D-4 Use of SCADE Suite CVK

CVK is used as follows (Figure D.3):

• The CVK User’s Manual [CVK_UM] is an
appendix of the customer’s verification
plan, more precisely in the qualification
plan of the user’s development
environment.

• The CVK test suite is instantiated for the
customer’s verification process, more
precisely in the qualification process of
one’s development environment, for the
verification of the compiler. Users must
verify that the complexity of their model
(depth of expressions, data structures,
and call tree) is lower than the one of
the model in CVK. Otherwise, they shall
either upgrade CVK accordingly or
decompose the model.

Figure D.3: Use of CVK items in user processes

Figure D.4 details the role of CVK items
(highlighted by shadowed boxes) in the
verification of the compiler:

• The C sample is regenerated by KCG
from the SCADE Suite sample, with
specified KCG options and is compared
to the provided Reference C sample.

• From the C sample, the C compiler/
linker generates an executable. Note
that the C sample is always taken from
the delivered reference sample, not
from the regenerated C sample.

• The executable reads input vectors
(from its static memory) and computes
output vectors. It compares the actual
output vectors to reference vectors
(from its static memory). Comparison is
performed directly in the C test harness.
The C primitive “==” is used for boolean,
integer and character data and a
specific C function is used for floating
point comparison with tolerance. Unit
tests of these comparison C functions
are provided in the CVK test suite to
ensure that the C compiler compiles
correctly these functions. The reference
vectors were developed and verified
when developing CVK, and are based on
the requirements (i.e., semantics of
model).

Figure D.4: Position of CVK items in the Compiler
Verification Process

The cross compiler/linker has to be run
with the same options as for the manual
code and as for the rest of the KCG-
generated code. If there is a discrepancy

Methodology Handbook / SCADE Suite with DO-178C Objectives / D - 107

(beyond a relative tolerance parameter,
named epsilon for floating point data)
between collected and reference results,
an analysis has to be conducted to find the
origin of the difference. If it is an error in
the use or contents of CVK (e.g., error in
adapting the compiling procedure), this
has to be fixed. If it is due to an error in the
compiler, then the usage of this compiler
should be seriously reconsidered.

To be able to share the verification of
Source to Object code traceability analysis
between the KCG-generated code and
manual code, it is recommended to use
the same environment (cross-compiler/
linker with same options) for the manual
code and the KCG code.

Methodology Handbook / SCADE Suite with DO-178C Objectives / 109

A
Accuracy 62

ANAC 5

Application Lifecycle
Management Gateway 33

Architecture 34

ARP 4754A

overview 5

C
C elementary constructs 105

C sample 104

C subset 104

CAAC 5

Causality 26

Clock 30

Coding process 43

Combined Testing Process 71

Compiler Verification Kit 103

Concurrency 27, 30

Control Engineering 23

Coverage 78, 79

Coverage analysis

test coverage 15

with SCADE Test Model
Coverage 78

Coverage criteria

structural coverage 15

Coverage resolution

structural coverage 15

CPU 62

CVK 103

CVK test execution and MC/
DC 104

D
Data typing 29

Dependency 27

Design process 34

Design Verifier 60

Development assurance levels 7

Development processes 9, 10

Discrete control 27

DO-178C

overview 5

processes 9

E
EASA 5

Equations 25

EUROCAE 5

F
FAA 5

Filtering 37

Formal verification 60

H
High-level requirements 10, 12

HLR

see High-level requirements

I
Influence 83

Initialization 27

Integral processes 9

Integration process 47

Interface 25

K
KCG 31, 69

acronym 95

DO-178C qualification 99

SCADE Suite and CVK 103

L
LLR

see Low-level requirements

Local variables 25

Logic 37, 38

Low-level requirements 10, 12

development in SCADE 36

M
Model 79

Model Coverage 79

Model-based 30

Observable Modified Condition/
Decision Coverage

see OMC/DC

Modular 26

Multitasking 51

O
ODC 84

OMC/DC 16, 84

Operator 25

P
Parameter Data Item 70

Partitioning 67

Planning processes 9

Q
Qualification 69, 99

R
Regulation 37

Requirements process 34

RTCA 5

RTOS 49

Index

Index

Methodology Handbook / SCADE Suite with DO-178C Objectives / 110

S
SCADE State Machines 27

Scheduling 48

Software architecture 10

Software Design Standards 12

Source code 12

Standards 70

T
TAS

acronym 95

Task integration

RTOS 49

Tasking 48

TCI

acronym 95

Teamwork 51

Test procedures 78

Test results 78

Testing 14, 55

TORD

acronym 95

Traceability 44

U
Unintended functions 79

V
Validation 55

Verification 55

Verification processes 11

W
WCET analysis 62

Contact Information

Submit questions to SCADE Products Technical Support at
scade-support@ansys.com

Contact one of our Sales representatives at
scade-sales@ansys.com

Direct general questions about SCADE products to
scade-info@ansys.com

Discover the latest news on our products at
http://www.ansys.com

Copyright © 2021 ANSYS, Inc. All rights reserved. Ansys, SCADE,
SCADE Suite, SCADE Display, SCADE Architect, SCADE LifeCycle, and
SCADE Test are trademarks or registered trademarks of ANSYS, Inc.
or its subsidiaries in the U.S. or other countries.
[SC-HB-DO178C-KCG66 - SecondEd]

mailto:scade-support@ansys.com
mailto:scade-sales@ansys.com
mailto:scade-info@ansys.com
http://www.ansys.com/products/embedded-software

	Table of Contents
	List of Figures
	List of Tables
	1/ Document Background, Objectives, and Scope
	1.1 Background
	1.2 Objectives and Scope
	1.3 Challenges in Airborne Software Development
	1.3.1 Avoid multiple descriptions of the software
	1.3.2 Prevent ambiguity and lack of accuracy in specifications
	1.3.3 Avoid design and coding errors
	1.3.4 Allow efficient implementation of code on target
	1.3.5 Find specification and design errors as early as possible
	1.3.6 Lower complexity of updates
	1.3.7 Improve verification efficiency
	1.3.8 Provide efficient way to store Intellectual Property (IP)

	2/ Development of Safety-Critical Airborne Software
	2.1 ARP 4754A and DO-178C Guidance
	2.1.1 Introduction
	2.1.2 ARP 4754A/ED-79
	2.1.3 DO-178C/ED-12C
	2.1.4 Relationship between ARP 4754A, ARP 4761, and DO-178C
	2.1.5 Development assurance levels
	2.1.6 DO-178C documents structure
	2.1.7 Objective-oriented approach
	2.1.8 DO-178C processes overview

	2.2 DO-178C Development Processes
	2.3 DO-178C Verification Processes
	2.3.1 Objectives of software verification
	2.3.2 Reviews and analyses of HLR
	2.3.3 Reviews and analyses of LLR and architecture
	2.3.4 Reviews and analyses of the source code
	2.3.5 Software testing process

	2.4 DO-331 Model-Based Development and Verification Processes
	2.4.1 Model Definition
	2.4.2 Model Categorization
	2.4.3 Impact of Model-Based Development in DO-178C Development Processes
	2.4.4 Impact of Model-Based Development in DO-178C Verification Processes
	2.4.5 Model coverage analysis for design models
	2.4.6 Model coverage criteria

	2.5 DO-330 Software Tools Qualification Considerations
	2.5.1 Purpose of tool qualification
	2.5.2 Tool criteria
	2.5.3 Tool Qualification Levels
	2.5.4 Tool Stakeholders

	3/ Model-Based Development with SCADE
	3.1 What is SCADE?
	3.2 SCADE Modeling Techniques
	3.2.1 Modeling behavior with SCADE Suite
	3.2.1.1 Familiarity and accuracy reconciled
	3.2.1.2 Scade operator
	3.2.1.3 Data flow diagrams for continuous control
	3.2.1.4 State Machines for discrete control
	3.2.1.5 Combining data and control flows
	3.2.1.6 SCADE data typing

	3.2.2 SCADE Suite cycle-based intuitive computation model
	3.2.3 SCADE Suite as a model-based development environment
	3.2.4 SCADE modeling and safety benefits

	4/ Software Development Activities with SCADE Suite
	4.1 Overview of Software Development Activities
	4.2 Software Requirements Process
	4.3 Software Design Process with SCADE Suite
	4.3.1 Architecture design
	4.3.2 SCADE low-level requirements development
	4.3.2.1 Logics LLR development with SCADE Suite

	4.3.3 Reusable components and library management
	4.3.3.1 SCADE library software life cycle
	4.3.3.2 Re-usability with SCADE Suite library components

	4.3.4 Robustness management

	4.4 Software Coding Process
	4.4.1 Code generation from SCADE Suite models
	4.4.2 Code generation from multiple components

	4.5 Software Integration Process
	4.5.1 Integration aspects
	4.5.2 Interface with the external environment
	4.5.3 SCADE Suite module integration
	4.5.4 Integration of external code
	4.5.5 Scheduling and tasking

	4.6 Teamwork

	5/ Software Verification Activities
	5.1 Overview
	5.2 Verification of High-Level Requirements
	5.2.1 Verification objectives for HLR
	5.2.2 Verification methods for HLR
	5.2.3 Verification summary for HLR

	5.3 Verification of SCADE Low-Level Requirements and Architecture
	5.3.1 Verification objectives for the LLR and architecture
	5.3.2 Compliance with high-level requirements
	5.3.2.1 Model simulation
	5.3.2.2 Peer reviews with SCADE LifeCycle Reporter
	5.3.2.3 Formal verification with SCADE Suite Design Verifier

	5.3.3 Model accuracy and consistency
	5.3.4 Compatibility with target computer
	5.3.5 Verifiability
	5.3.6 Conformity to standards
	5.3.7 Traceability from SCADE Suite LLR to HLR
	5.3.8 Algorithms accuracy
	5.3.9 Partitioning
	5.3.10 Verification of simulation cases, procedures and results (MB. specific objectives)
	5.3.11 Verification summary for LLR and architecture

	5.4 Verification of Coding Outputs and Integration Process
	5.4.1 Verification objectives for coding output and integration process
	5.4.2 Impact of code generator qualification
	5.4.3 Verification of parameter data items
	5.4.4 Verification summary for coding output and integration process

	5.5 Testing of Outputs from Integration Process
	5.5.1 Testing objectives for outputs from integration process
	5.5.2 SCADE Combined Testing Process overview
	5.5.3 Compliance of EOC with HLR (MB.A-6 #1) and robustness with HLR (MB.A-6 #2)
	5.5.4 Compliance of EOC to LLR (MB.A-6 #3)
	5.5.5 Robustness of EOC with LLR (MB.A-6 #4)
	5.5.6 Compatibility of EOC with target (MB.A-6 #5)
	5.5.7 Verification summary for testing outputs from integration process

	6/ Verification of the Verification Activities
	6.1 Verification Objectives
	6.2 Verification of Test Procedures and Results
	6.3 HLR Coverage Analysis
	6.4 LLR Coverage Analysis
	6.4.1 SCADE Test Model Coverage overview
	6.4.2 Logics LLR coverage analysis (MB.A- 7#4)
	6.4.2.1 Logics LLR coverage analysis with Model Coverage
	6.4.2.2 Model coverage criteria

	6.4.3 Source code coverage analysis (from MB.A-7#5 to MB.A-7#8)
	6.4.3.1 SCADE Suite generated code coverage analysis

	6.4.4 Data and control coupling verification (MB.A-7#8)
	6.4.4.1 Definitions
	6.4.4.2 Verification of data and control coupling within models
	6.4.4.3 Verification of data and control coupling between model and external environment

	6.4.5 Verification of additional code untraceable to source code (MB.A- 7#9)
	6.4.6 Verification of simulation cases, procedures and results (MB.A-7#10, #11 and #12)

	6.5 Summary of Verification of Verification

	Appendixes and Index
	A/ References
	B/ Acronyms and Glossary
	C/ DO-178C Qualification of SCADE Suite KCG and SCADE Verification Tools
	C-1 What Does SCADE Suite KCG Qualification Mean and Imply?
	C-1.1 Development of SCADE Suite KCG
	C-1.2 SCADE Suite KCG Life-Cycle Documentation

	C-2 SCADE Test Model Coverage at TQL-4 Level
	C-3 SCADE Test Environment for Host and SCADE Test Target Execution at TQL-5 Level
	C-1 SCADE LifeCycle Reporter at TQL-5 Level

	D/ SCADE Suite Compiler Verification Kit (CVK)
	D-1 CVK Product Overview
	D-2 CVK Representativity
	D-3 Strategy for Developing SCADE Suite CVK
	D-4 Use of SCADE Suite CVK

	Index

